Citation: ZHENG Zhao-Lei, LIANG Zhen-Long. Reduced Chemical Kinetic Model of a Gasoline Surrogate Fuel for HCCI Combustion[J]. Acta Physico-Chimica Sinica, ;2015, 31(7): 1265-1274. doi: 10.3866/PKU.WHXB201505131
-
A new reduced chemical kinetic model that includes 103 species and 199 reactions is developed and used to describe the oxidation of a gasoline surrogate fuel consisting of n-heptane, iso-octane, toluene, and diisobutylene (DIB) for homogeneous charge compression ignition (HCCI). DIB is mainly consumed by Habstraction reactions by OH radicals to form three isomers, namely JC8H15- A, JC8H15- B, and JC8H15- D. Decomposition reaction is also one of the main reactions of DIB consumption, and this process forms two important C4 products, namely TC4H9 and IC4H7. These products are the primary sources for CH2O generation. The skeletal mechanism of toluene reference fuel (TRF) is based on the existing semi-detailed TRF mechanism developed by Andrae. The toluene and DIB sub-mechanism is developed using reaction path and sensitivity analyses. od agreements are achieved with the experimental ignition delays observed in a shock tube and an HCCI engine. The present reduced model has reliable performance for HCCI combustion simulations.
-
-
[1]
(1) Yao, M.; Zheng, Z.; Liu, H. Prog. Energ. Combust. 2009, 35, 398. doi: 10.1016/j.pecs.2009.05.001
-
[2]
(2) Westbrook, C. K. Proc. Combust. Inst. 2000, 28, 1563. doi: 10.1016/S0082-0784(00)80554-8
-
[3]
(3) Cancino, L.R.; Fikri, M.; Oliveira, A; Schulz, C. Proc. Combust. Inst. 2009, 32 (1), 501. doi: 10.1016/j.proci.2008.06.180
-
[4]
(4) Galmiche, B.; Halter, F.; Foucher, F. Combust. Flame 2012, 159 (11), 3286. doi: 10.1016/j.combustflame.2012.06.008
-
[5]
(5) Curran, H. J.; Pitz, W. J.; Westbrook, C. K. Combust. Flame 1998, 114, 149. doi: 10.1016/S0010-2180(97)00282-4
-
[6]
(6) Tanaka, S.; Ayala, F.; Keck, J. C. Combust. Flame 2003, 133 (4), 467. doi: 10.1016/S0010-2180(03)00057-9
-
[7]
(7) Tsurushima, T. Proc. Combust. Inst. 2009, 32, 2835. doi: 10.1016/j.proci.2008.06.018
-
[8]
(8) Pitz, W. J.; Cernansky, N.; Dryer, F. L. SAE Tech. Pap. Ser. 2007, 2007-01-0175.
-
[9]
(9) Chaos, M.; Zhao, Z.; Kazakov, A. A PRF+Toluene Surrogate Fuel Model for Simulating Gasoline Kinetics. In 5th U.S. Combustion Meeting, March 25-28, 2007; University of California: San Die , California, Paper # E26.
-
[10]
(10) Sakai, Y.; Miyoshi, A.; Koshi, M. Proc. Combust. Inst. 2009, 32, 411. doi: 10.1016/j.proci.2008.06.154
-
[11]
(11) Andrae, J. C; Björnbom, P.; Cracknell, R. F.; Kalghatgi, G. T. Combust. Flame 2007, 149, 2. doi: 10.1016/j.combustflame.2006.12.014
-
[12]
(12) Andrae, J. C.; Brinck, T.; Kalghatgi, G. T. Combust. Flame 2008, 155, 696. doi: 10.1016/j.combustflame.2008.05.010
-
[13]
(13) Andrae, J. C. Fuel 2013, 107, 740. doi: 10.1016/j.fuel.2013.01.070
-
[14]
(14) Pitz, W. J.; Seiser, R.; Bozzelli, J.W.; Seshadri, K.; Chen, C. J.; Costa, D.; Fournet, R.; Billaud, F.; Battin-Leclerc, F.; Weatbrook, C. K. Chemical Kinetic Study of Toluene Oxidation. In 29th International Symposium on Combustion, Hokkaido University, Sapporo, Japan, July 21-26, 2002; Elsevier: New York, 2002, UCRL-JC-125890.
-
[15]
(15) Lee, K.; Kim, Y.; Min, K. Combust. Theor. Model. 2010, 15, 107. doi: 10.1080/13647830.2010.528037
-
[16]
(16) Zhang, Q. F.; Zheng, Z. L.; He, Z.W.; Wang, Y. Acta Phys. -Chim. Sin. 2011, 27, 530. [张庆峰, 郑朝蕾, 何祖威, 王迎. 物理化学学报, 2011, 27, 530.] doi: 10.3866/PKU.WHXB20110334
-
[17]
(17) Machrafi, H.; Cavadias, S. Combust. Flame 2008, 155, 557. doi: 10.1016/j.combustflame.2008.04.022
-
[18]
(18) Gauthier, B. M.; Davidson, D. F.; Hanson, R. K. Combust. Flame 2004, 139, 300. doi: 10.1016/j.combustflame.2004.08.015
-
[19]
(19) Andrae, J. C. Fuel 2008, 87, 2013. doi: 10.1016/j.fuel.2007.09.010
-
[20]
(20) Andrae, J. C.; Head, R. A. Combust. Flame 2009, 156, 842. doi: 10.1016/j.combustflame.2008.10.002
-
[21]
(21) Cancino, L. R.; Fikri, M.; Oliveira, A. Fuel 2011, 9, 1238.
-
[22]
(22) Wang, Y.; Yao, M.; Zheng, Z. Fuel 2013, 113, 347. doi: 10.1016/j.fuel.2013.05.076
-
[23]
(23) Zhong, B.; Zheng, D. Fuel 2014, 128, 458. doi: 10.1016/j.fuel.2014.03.044
-
[24]
(24) Metcalfe, W. K.; Pitz, W. J.; Curran, H. J. Proc. Combust. Inst. 2007, 31, 377. doi: 10.1016/j.proci.2006.07.207
-
[25]
(25) Fikri, M.; Herzler, J.; Starke, R.; Schulz, C.; Roth, P.; Kalghatgi, G. T. Combust. Flame 2008, 152, 276. doi: 10.1016/j.combustflame.2007.07.010
-
[26]
(26) Zheng, Z.; Yao, M. Fuel 2009, 88, 354. doi: 10.1016/j.fuel.2008.09.002
-
[27]
(27) Machrafi, H. Energ. Convers. Manag. 2008, 49, 2956. doi: 10.1016/j.enconman.2008.06.016
-
[1]
-
-
[1]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[2]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[3]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[4]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[5]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[6]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[7]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[8]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[9]
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037
-
[10]
Ruitong Zhang , Zhiqiang Zeng , Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004
-
[11]
Yuan Chun , Lijun Yang , Jinyue Yang , Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072
-
[12]
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
-
[13]
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
-
[14]
Shuying Zhu , Shuting Wu , Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117
-
[15]
Houjin Li , Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016
-
[16]
Yue Zhao , Yanfei Li , Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001
-
[17]
Cunling Ye , Xitong Zhao , Hongfang Wang , Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043
-
[18]
Hong Lu , Yidie Zhai , Xingxing Cheng , Yujia Gao , Qing Wei , Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074
-
[19]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[20]
Guojie Xu , Fang Yu , Yunxia Wang , Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060
-
[1]
Metrics
- PDF Downloads(275)
- Abstract views(661)
- HTML views(26)