Citation: SHI Chen-Yang, HE Hui-Bin, HONG Zan-Fa, ZHAN Hong-Bing, FENG Miao. Effect of HCl Post-Treatment on Morphology of Hydrothermally Prepared Titanate Nanomaterials with Optical Limiting Properties[J]. Acta Physico-Chimica Sinica, ;2015, 31(7): 1430-1436. doi: 10.3866/PKU.WHXB201505112
-
The effect of post-treatment HCl concentration on titanate-titania transformation was investigated. Titanate was prepared by the alkaline hydrothermal treatment of TiO2, and then transformed to titania/titanate upon subsequent washing with 0.10-0.55 mol·L-1 HCl. The titanate almost completely transformed to rutile when treated with HCl concentrations>0.78 mol·L-1. Accompanying this phase transformation, the morphology of the sample changed from nanotubes to nanosheets and nanoparticles. This was related to the rate of phase transformation, which depended on the HCl concentration. Titanate became resolved into detached TiO6 octahedra during HCl treatment, and titanate-titania transformation occurred via rearrangement of the TiO6 octahedra. The phase transformation and morphological evolution were studied by X- ray diffraction, and transmission and scanning electron microscopies. The linear and nonlinear optical properties of the products were investigated using ultraviolet-visible absorption spectroscopy and the open aperture Z-scan technique, respectively. The minimum transmittance at Z=0 and maximum optical limiting effect were obtained when the HCl concentration was 0.55 mol·L-1. Different nonlinear optical effects were exhibited by different morphologies.
-
-
[1]
(1) Chung, I.; Lee, B.; He, J.; Chang, R. P. H.; Kanatzidis, M. G. Nature 2012, 485 (7399), 486. doi: 10.1038/nature11067
-
[2]
(2) Xia, T.; Zhang, W.; Murowchick, J.; Liu, G.; Chen, X. Nano Lett. 2013, 13 (11), 5289. doi: 10.1021/nl402810d
-
[3]
(3) Liu, M.; Qiu, X.; Miyauchi, M.; Hashimoto, K. Chem. Mater. 2011, 23 (23), 5282. doi: 10.1021/cm203025b
-
[4]
(4) Yang, D. J.; Zheng, Z. F.; Zhu, H. Y.; Liu, H.W.; Gao, X. P. Adv. Mater. 2008, 20 (14), 2777. doi: 10.1002/adma.v20:14
-
[5]
(5) Xia, T.; Zhang, C.; Oyler, N. A.; Chen, X. Adv. Mater. 2013, 25 (47), 6905. doi: 10.1002/adma.v25.47
-
[6]
(6) Rajh, T.; Dimitrijevic, N. M.; Bissonnette, M.; Koritarov, T.; Konda, V. Chem. Rev. 2014, 114 (19), 10177. doi: 10.1021/cr500029g
-
[7]
(7) Bavykin, D. V.; Walsh, F. C. Eur. J. Inorg. Chem. 2009, 2009
-
[8]
(8), 977. doi: 10.1002/ejic.v2009:8 (8) Zhang, H.; Banfield, J. F. Chem. Rev. 2014, 114 (19), 9613. doi: 10.1021/cr500072j
-
[9]
(9) Xiao, Y. M.; Wu, J. H.; Yue, G. T.; Liu, J. M.; Huang, M. L.; Fan, L. Q.; Lan, Z. Acta Phys .-Chim Sin. 2012, 28 (3), 578. [肖尧明, 吴季怀, 岳根田, 林建明, 黄妙良, 范乐庆, 兰章. 物理化学学报, 2012, 28 (3), 578.]
-
[10]
(10) Liu, C.; Miao, L.; Zhou, J.; Huang, R.; Fisher, C. A.; Tanemura, S. J. Phys. Chem. C 2013, 117 (22), 11487. doi: 10.1021/jp401132g
-
[11]
(11) Maeda, K. ACS Catal. 2014, 4 (6), 1632. doi: 10.1021/cs500159a
-
[12]
(12) Boppana, V. B. R.; Lobo, R. F. J. Catal. 2011, 281 (1), 156. doi: 10.1016/j.jcat.2011.04.014
-
[13]
(13) Yang, D.; Sarina, S.; Zhu, H.; Liu, H.; Zheng, Z.; Xie, M.; Smith, S. V.; Komarneni, S. Angew. Chem. Int. Edit. 2011, 50 (45), 10594. doi: 10.1002/anie.201103286
-
[14]
(14) Wang, L.; Sasaki, T. Chem. Rev. 2014, 114 (19), 9455. doi: 10.1021/cr400627u
-
[15]
(15) Fukuda, K.; Ebina, Y.; Shibata, T.; Aizawa, T.; Nakai, I.; Sasaki, T. J. Am. Chem. Soc. 2007, 129 (1), 202. doi: 10.1021/ja0668116
-
[16]
(16) Zhao, B.; Lin, L.; He, D. J. Mater. Chem. A 2013, 1 (5), 1659. doi: 10.1039/C2TA00755J
-
[17]
(17) Zhu, H. Y.; Lan, Y.; Gao, X. P.; Ringer, S. P.; Zheng, Z. F.; Song, D. Y.; Zhao, J. J. Am. Chem. Soc. 2005, 127 (18), 6730. doi: 10.1021/ja044689+
-
[18]
(18) Yang, M.; Chen, P.; Tsai, M.; Chen, T.; Chang, I.; Chiu, H.; Lee, C. CrystEngComm 2014, 16 (3), 441. doi: 10.1039/C3CE41750F
-
[19]
(19) Murakami, N.; Kamai, T.; Tsubota, T.; Ohno, T. CrystEngComm 2010, 12 (2), 532. doi: 10.1039/B913586N
-
[20]
(20) Morgan, D. L.; Liu, H.; Frost, R. L.; Waclawik, E. R. J. Phys. Chem. C 2009, 114 (1), 101.
-
[21]
(21) Bavykin, D. V.; Kulak, A. N.; Walsh, F. C. Cryst. Growth Des. 2010, 10 (10), 4421.
-
[22]
(22) Tsai, C.; Teng, H. Chem. Mater. 2006, 18 (2), 367. doi: 10.1021/cm0518527
-
[23]
(23) Suetake, J.; Nosaka, A. Y.; Hodouchi, K.; Matsubara, H.; Nosaka, Y. J. Phys. Chem. C 2008, 112 (47), 18474. doi: 10.1021/jp8069223
-
[24]
(24) Bavykin, D. V.; Friedrich, J. M.; Lapkin, A. A.; Walsh, F. C. Chem. Mater. 2006, 18 (5), 1124. doi: 10.1021/cm0521875
-
[25]
(25) Hong, Z.; Xu, Y.; Liu, Y.; Wei, M. Chem. Eur. J. 2012, 18 (34), 10753. doi: 10.1002/chem.v18.34
-
[26]
(26) Shieh, D.; Chen, P.; Lin, J. Mater. Chem. Phys. 2012, 134 (2), 1020.
-
[27]
(27) You, W.; Feng, M.; Zhan, Y.; Chen, R.; Zhan, H. Chem. Eng. J. 2013, 233, 360. doi: 10.1016/j.cej.2013.08.047
-
[28]
(28) Chen, Y.; Hanack, M.; Araki, Y.; Ito, O. Chem. Soc. Rev. 2005, 34 (6), 517. doi: 10.1039/b416368k
-
[29]
(29) Chen, J.; Wang, S. Q.; Yang, G. Q. Acta Phys. -Chim Sin. 2015, 31 (4), 595. [陈军, 王双青, 杨国强. 物理化学学报, 2015, 31 (4), 595.]
-
[30]
(30) Feng, M.; Zhan, H.; Chen, Y. Appl. Phys. Lett. 2010, 96 (3), 33107. doi: 10.1063/1.3279148
-
[31]
(31) Philip, R.; Chantharasupawong, P.; Qian, H.; Jin, R.; Thomas, J. Nano Lett. 2012, 12 (9), 4661. doi: 10.1021/nl301988v
-
[32]
(32) Jia, W. L.; Douglas, E. P.; Guo, F. G.; Sun, W. F. Appl. Phys. Lett. 2004, 85 (26), 6326. doi: 10.1063/1.1836871
-
[33]
(33) Feng, M.; Zhan, H.; Miao, L. Nanotechnology 2010, 21 (18), 185707. doi: 10.1088/0957-4484/21/18/185707
-
[34]
(34) Jiao, Y.; Zhao, B.; Chen, F.; Zhang, J. CrystEngComm 2011, 13 (12), 4167. doi: 10.1039/c0ce00932f
-
[35]
(35) Yin, H.; Wada, Y.; Kitamura, T.; Kambe, S.; Murasawa, S.; Mori, H.; Sakata, T.; Yanagida, S. J. Mater. Chem. 2001, 11 (6), 1694. doi: 10.1039/b008974p
-
[36]
(36) Yan, M.; Chen, F.; Zhang, J. Chem. Lett. 2004, 33 (10), 1352. doi: 10.1246/cl.2004.1352
-
[37]
(37) Miyauchi, M.; Liu, Z.; Zhao, Z.; Anandan, S.; Tokudome, H. Langmuir 2009, 26 (2), 796.
-
[38]
(38) Gateshki, M.; Yin, S.; Ren, Y.; Petkov, V. Chem. Mater. 2007, 19 (10), 2512. doi: 10.1021/cm0630587
-
[39]
(39) Mao, Y.; Wong, S. S. J. Am. Chem. Soc. 2006, 128 (25), 8217. doi: 10.1021/ja0607483
-
[40]
(40) Burdett, J. K.; Hughbanks, T.; Miller, G. J.; Richardson J.W., Jr.; Smith, J. V. J. Am. Chem. Soc. 1987, 109 (12), 3639. doi: 10.1021/ja00246a021
-
[41]
(41) Wen, P.; Ishikawa, Y.; Itoh, H.; Feng, Q. J. Phys. Chem. C 2009, 113 (47), 20275. doi: 10.1021/jp908181e
-
[42]
(42) Wen, P.; Itoh, H.; Tang, W.; Feng, Q. Langmuir 2007, 23 (23), 11782. doi: 10.1021/la701632t
-
[43]
(43) Wang, J.; Chen, Y.; Blau, W. J. J. Mater. Chem. 2009, 19 (40), 7425. doi: 10.1039/b906294g
-
[1]
-
-
[1]
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
-
[2]
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
-
[3]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[4]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[5]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[6]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[7]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[8]
Qi Wang , Yicong Gao , Feng Lu , Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141
-
[9]
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
-
[10]
Juan Yuan , Bin Zhang , Jinping Wu , Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014
-
[11]
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
-
[12]
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
-
[13]
Gaoyan Chen , Chaoyue Wang , Juanjuan Gao , Junke Wang , Yingxiao Zong , Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011
-
[14]
Ji Qi , Jianan Zhu , Yanxu Zhang , Jiahao Yang , Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050
-
[15]
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012
-
[16]
Xiaowu Zhang , Pai Liu , Qishen Huang , Shufeng Pang , Zhiming Gao , Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021
-
[17]
Jing Wang , Pingping Li , Yuehui Wang , Yifan Xiu , Bingqian Zhang , Shuwen Wang , Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097
-
[18]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[19]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[20]
Zhaohu Li , Weidong Wang , Yuhao Liu , Mingzhe Han , Lingling Wei , Huan Jiao . Research on the Safety Management and Disposal of Chemical Laboratory Waste. University Chemistry, 2024, 39(10): 128-136. doi: 10.3866/PKU.DXHX202312090
-
[1]
Metrics
- PDF Downloads(346)
- Abstract views(380)
- HTML views(3)