Citation: SHI Chen-Yang, HE Hui-Bin, HONG Zan-Fa, ZHAN Hong-Bing, FENG Miao. Effect of HCl Post-Treatment on Morphology of Hydrothermally Prepared Titanate Nanomaterials with Optical Limiting Properties[J]. Acta Physico-Chimica Sinica, ;2015, 31(7): 1430-1436. doi: 10.3866/PKU.WHXB201505112 shu

Effect of HCl Post-Treatment on Morphology of Hydrothermally Prepared Titanate Nanomaterials with Optical Limiting Properties

  • Received Date: 3 April 2015
    Available Online: 11 May 2015

    Fund Project: 国家自然科学基金(51172045, 51402051) (51172045, 51402051)教育部高校博士点基金(20113514120006)资助项目 (20113514120006)

  • The effect of post-treatment HCl concentration on titanate-titania transformation was investigated. Titanate was prepared by the alkaline hydrothermal treatment of TiO2, and then transformed to titania/titanate upon subsequent washing with 0.10-0.55 mol·L-1 HCl. The titanate almost completely transformed to rutile when treated with HCl concentrations>0.78 mol·L-1. Accompanying this phase transformation, the morphology of the sample changed from nanotubes to nanosheets and nanoparticles. This was related to the rate of phase transformation, which depended on the HCl concentration. Titanate became resolved into detached TiO6 octahedra during HCl treatment, and titanate-titania transformation occurred via rearrangement of the TiO6 octahedra. The phase transformation and morphological evolution were studied by X- ray diffraction, and transmission and scanning electron microscopies. The linear and nonlinear optical properties of the products were investigated using ultraviolet-visible absorption spectroscopy and the open aperture Z-scan technique, respectively. The minimum transmittance at Z=0 and maximum optical limiting effect were obtained when the HCl concentration was 0.55 mol·L-1. Different nonlinear optical effects were exhibited by different morphologies.

  • 加载中
    1. [1]

      (1) Chung, I.; Lee, B.; He, J.; Chang, R. P. H.; Kanatzidis, M. G. Nature 2012, 485 (7399), 486. doi: 10.1038/nature11067

    2. [2]

      (2) Xia, T.; Zhang, W.; Murowchick, J.; Liu, G.; Chen, X. Nano Lett. 2013, 13 (11), 5289. doi: 10.1021/nl402810d

    3. [3]

      (3) Liu, M.; Qiu, X.; Miyauchi, M.; Hashimoto, K. Chem. Mater. 2011, 23 (23), 5282. doi: 10.1021/cm203025b

    4. [4]

      (4) Yang, D. J.; Zheng, Z. F.; Zhu, H. Y.; Liu, H.W.; Gao, X. P. Adv. Mater. 2008, 20 (14), 2777. doi: 10.1002/adma.v20:14

    5. [5]

      (5) Xia, T.; Zhang, C.; Oyler, N. A.; Chen, X. Adv. Mater. 2013, 25 (47), 6905. doi: 10.1002/adma.v25.47

    6. [6]

      (6) Rajh, T.; Dimitrijevic, N. M.; Bissonnette, M.; Koritarov, T.; Konda, V. Chem. Rev. 2014, 114 (19), 10177. doi: 10.1021/cr500029g

    7. [7]

      (7) Bavykin, D. V.; Walsh, F. C. Eur. J. Inorg. Chem. 2009, 2009

    8. [8]

      (8), 977. doi: 10.1002/ejic.v2009:8 (8) Zhang, H.; Banfield, J. F. Chem. Rev. 2014, 114 (19), 9613. doi: 10.1021/cr500072j

    9. [9]

      (9) Xiao, Y. M.; Wu, J. H.; Yue, G. T.; Liu, J. M.; Huang, M. L.; Fan, L. Q.; Lan, Z. Acta Phys .-Chim Sin. 2012, 28 (3), 578. [肖尧明, 吴季怀, 岳根田, 林建明, 黄妙良, 范乐庆, 兰章. 物理化学学报, 2012, 28 (3), 578.]

    10. [10]

      (10) Liu, C.; Miao, L.; Zhou, J.; Huang, R.; Fisher, C. A.; Tanemura, S. J. Phys. Chem. C 2013, 117 (22), 11487. doi: 10.1021/jp401132g

    11. [11]

      (11) Maeda, K. ACS Catal. 2014, 4 (6), 1632. doi: 10.1021/cs500159a

    12. [12]

      (12) Boppana, V. B. R.; Lobo, R. F. J. Catal. 2011, 281 (1), 156. doi: 10.1016/j.jcat.2011.04.014

    13. [13]

      (13) Yang, D.; Sarina, S.; Zhu, H.; Liu, H.; Zheng, Z.; Xie, M.; Smith, S. V.; Komarneni, S. Angew. Chem. Int. Edit. 2011, 50 (45), 10594. doi: 10.1002/anie.201103286

    14. [14]

      (14) Wang, L.; Sasaki, T. Chem. Rev. 2014, 114 (19), 9455. doi: 10.1021/cr400627u

    15. [15]

      (15) Fukuda, K.; Ebina, Y.; Shibata, T.; Aizawa, T.; Nakai, I.; Sasaki, T. J. Am. Chem. Soc. 2007, 129 (1), 202. doi: 10.1021/ja0668116

    16. [16]

      (16) Zhao, B.; Lin, L.; He, D. J. Mater. Chem. A 2013, 1 (5), 1659. doi: 10.1039/C2TA00755J

    17. [17]

      (17) Zhu, H. Y.; Lan, Y.; Gao, X. P.; Ringer, S. P.; Zheng, Z. F.; Song, D. Y.; Zhao, J. J. Am. Chem. Soc. 2005, 127 (18), 6730. doi: 10.1021/ja044689+

    18. [18]

      (18) Yang, M.; Chen, P.; Tsai, M.; Chen, T.; Chang, I.; Chiu, H.; Lee, C. CrystEngComm 2014, 16 (3), 441. doi: 10.1039/C3CE41750F

    19. [19]

      (19) Murakami, N.; Kamai, T.; Tsubota, T.; Ohno, T. CrystEngComm 2010, 12 (2), 532. doi: 10.1039/B913586N

    20. [20]

      (20) Morgan, D. L.; Liu, H.; Frost, R. L.; Waclawik, E. R. J. Phys. Chem. C 2009, 114 (1), 101.

    21. [21]

      (21) Bavykin, D. V.; Kulak, A. N.; Walsh, F. C. Cryst. Growth Des. 2010, 10 (10), 4421.

    22. [22]

      (22) Tsai, C.; Teng, H. Chem. Mater. 2006, 18 (2), 367. doi: 10.1021/cm0518527

    23. [23]

      (23) Suetake, J.; Nosaka, A. Y.; Hodouchi, K.; Matsubara, H.; Nosaka, Y. J. Phys. Chem. C 2008, 112 (47), 18474. doi: 10.1021/jp8069223

    24. [24]

      (24) Bavykin, D. V.; Friedrich, J. M.; Lapkin, A. A.; Walsh, F. C. Chem. Mater. 2006, 18 (5), 1124. doi: 10.1021/cm0521875

    25. [25]

      (25) Hong, Z.; Xu, Y.; Liu, Y.; Wei, M. Chem. Eur. J. 2012, 18 (34), 10753. doi: 10.1002/chem.v18.34

    26. [26]

      (26) Shieh, D.; Chen, P.; Lin, J. Mater. Chem. Phys. 2012, 134 (2), 1020.

    27. [27]

      (27) You, W.; Feng, M.; Zhan, Y.; Chen, R.; Zhan, H. Chem. Eng. J. 2013, 233, 360. doi: 10.1016/j.cej.2013.08.047

    28. [28]

      (28) Chen, Y.; Hanack, M.; Araki, Y.; Ito, O. Chem. Soc. Rev. 2005, 34 (6), 517. doi: 10.1039/b416368k

    29. [29]

      (29) Chen, J.; Wang, S. Q.; Yang, G. Q. Acta Phys. -Chim Sin. 2015, 31 (4), 595. [陈军, 王双青, 杨国强. 物理化学学报, 2015, 31 (4), 595.]

    30. [30]

      (30) Feng, M.; Zhan, H.; Chen, Y. Appl. Phys. Lett. 2010, 96 (3), 33107. doi: 10.1063/1.3279148

    31. [31]

      (31) Philip, R.; Chantharasupawong, P.; Qian, H.; Jin, R.; Thomas, J. Nano Lett. 2012, 12 (9), 4661. doi: 10.1021/nl301988v

    32. [32]

      (32) Jia, W. L.; Douglas, E. P.; Guo, F. G.; Sun, W. F. Appl. Phys. Lett. 2004, 85 (26), 6326. doi: 10.1063/1.1836871

    33. [33]

      (33) Feng, M.; Zhan, H.; Miao, L. Nanotechnology 2010, 21 (18), 185707. doi: 10.1088/0957-4484/21/18/185707

    34. [34]

      (34) Jiao, Y.; Zhao, B.; Chen, F.; Zhang, J. CrystEngComm 2011, 13 (12), 4167. doi: 10.1039/c0ce00932f

    35. [35]

      (35) Yin, H.; Wada, Y.; Kitamura, T.; Kambe, S.; Murasawa, S.; Mori, H.; Sakata, T.; Yanagida, S. J. Mater. Chem. 2001, 11 (6), 1694. doi: 10.1039/b008974p

    36. [36]

      (36) Yan, M.; Chen, F.; Zhang, J. Chem. Lett. 2004, 33 (10), 1352. doi: 10.1246/cl.2004.1352

    37. [37]

      (37) Miyauchi, M.; Liu, Z.; Zhao, Z.; Anandan, S.; Tokudome, H. Langmuir 2009, 26 (2), 796.

    38. [38]

      (38) Gateshki, M.; Yin, S.; Ren, Y.; Petkov, V. Chem. Mater. 2007, 19 (10), 2512. doi: 10.1021/cm0630587

    39. [39]

      (39) Mao, Y.; Wong, S. S. J. Am. Chem. Soc. 2006, 128 (25), 8217. doi: 10.1021/ja0607483

    40. [40]

      (40) Burdett, J. K.; Hughbanks, T.; Miller, G. J.; Richardson J.W., Jr.; Smith, J. V. J. Am. Chem. Soc. 1987, 109 (12), 3639. doi: 10.1021/ja00246a021

    41. [41]

      (41) Wen, P.; Ishikawa, Y.; Itoh, H.; Feng, Q. J. Phys. Chem. C 2009, 113 (47), 20275. doi: 10.1021/jp908181e

    42. [42]

      (42) Wen, P.; Itoh, H.; Tang, W.; Feng, Q. Langmuir 2007, 23 (23), 11782. doi: 10.1021/la701632t

    43. [43]

      (43) Wang, J.; Chen, Y.; Blau, W. J. J. Mater. Chem. 2009, 19 (40), 7425. doi: 10.1039/b906294g


  • 加载中
    1. [1]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    2. [2]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    3. [3]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    4. [4]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    7. [7]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    8. [8]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    9. [9]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    10. [10]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    11. [11]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    13. [13]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    14. [14]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    15. [15]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    16. [16]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    17. [17]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    18. [18]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    19. [19]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    20. [20]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

Metrics
  • PDF Downloads(346)
  • Abstract views(499)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return