Citation: HUA Shu-Gui, JIN Hao, OUYANG Yong-Zhong. Contribution of Non-Covalent Interactions to the Gas-Phase Stability of the Double-Helix of B-DNA: A Density Functional Theory Study with GEBF Approach[J]. Acta Physico-Chimica Sinica, ;2015, 31(7): 1309-1314. doi: 10.3866/PKU.WHXB201505111
-
We employed the generalized energy-based fragmentation (GEBF) approach to investigate the gas-phase structures of B-DNA double-helices up to 10 base pairs at several theoretical levels. By comparing the results obtained using the M06-2X functional and other methods (including the B3LYP, B3LYP-vdW, and TPSS functionals), we found that the absence of stacking interactions could lead to the enlargement of the vertical distance between adjacent bases. The magnitude of this enlargement of the vertical distance quickly decreases as the length of the double-helix increases. The gas-phase stabilization of the double-helical structure of B-DNA is a cooperative effect, in which hydrogen bonding plays a more important role than stacking interaction does up to 10 base pairs.
-
-
[1]
(1) Šponer, J.; Riley, K. E.; Hobza, P. Phys. Chem. Chem. Phys. 2008, 10, 2595. doi: 10.1039/b719370j
-
[2]
(2) Gil, A.; Branchadell, V.; Bertran, J.; Oliva, A. J. Phys. Chem. B 2009, 113, 4907. doi: 10.1021/jp809737c
-
[3]
(3) Banáš, P.; Mládek, A.; Otyepka, M.; Zgarbová, M.; Jure?ka, P.; Svozil, D.; Lankaš, F.; Šponer, J. J. Chem. Theory Comput. 2012, 8, 2448. doi: 10.1021/ct3001238
-
[4]
(4) Sedlák, R.; Jure?ka, P.; Hobza, P. J. Chem. Phys. 2007, 127, 075104. doi: 10.1063/1.2759207
-
[5]
(5) Pitoňák, M.; Neogrády, P.; Hobza, P. Phys. Chem. Chem. Phys. 2010, 12, 1369. doi: 10.1039/B919354E
-
[6]
(6) Riley, K. E.; Pionak, M.; Jurecka, P.; Hobza, P. Chem. Rev. 2010, 110, 5023. doi: 10.1021/cr1000173
-
[7]
(7) Zhang, Y.; Ma, N.; Wang, W. J. Theor. Comput. Chem. 2012, 11, 1165. doi: 10.1142/S0219633612500770
-
[8]
(8) Jones, G. J.; Robertazzi, A.; Platts, J. A. J. Phys. Chem. B 2013, 117, 3315. doi: 10.1021/jp400345s
-
[9]
(9) Wilson, K. A.; Kellie, J. L.; Wetmore, S. D. Nucleic Acids Res. 2014, 42, 6726. doi: 10.1093/nar/gku269
-
[10]
(10) Elstner, M.; Hobza, P.; Frauenheim, T.; Suhai, S.; Kaxiras, E. J. Chem. Phys. 2001, 114, 5149. doi: 10.1063/1.1329889
-
[11]
(11) ?erný, J.; Kabelá?, M.; Hobza, P. J. Am. Chem. Soc. 2008, 130, 16055. doi: 10.1021/ja805428q
-
[12]
(12) Cooper, V. R.; Thonhauser, T.; Langreth, D. C. J. Chem. Phys. 2008, 128, 204102. doi: 10.1063/1.2924133
-
[13]
(13) Cooper, V. R.; Thonhauser, T.; Puzder, A.; Schröder, E.; Lundqvist, B. I.; Langreth, D. C. J. Am. Chem. Soc. 2008, 130, 1305.
-
[14]
(14) Šponer, J.; Mládek, A.; Špa?ková, N.; Cang, X.; Cheatham, T.; Grimme, S. J. Am. Chem. Soc. 2013, 135, 9785. doi: 10.1021/ja402525c
-
[15]
(15) Barone, G.; Guerra, C.; Bickelhaupt, F. ChemistryOpen 2013, 2, 186. doi: 10.1002/open.v2.5/6
-
[16]
(16) Grunenberg, J.; Barone, G.; Spinello, A. J. Chem. Theory Comput. 2014, 10, 2901. doi: 10.1021/ct500329f
-
[17]
(17) Hesselmann, A.; Jansen, G.; Schütz, M. J. Am. Chem. Soc. 2006, 128, 11730. doi: 10.1021/ja0633363
-
[18]
(18) Fiethen, A.; Jansen, G.; Hesselmann, A.; Schütz, M. J. Am. Chem. Soc. 2008, 130, 1802. doi: 10.1021/ja076781m
-
[19]
(19) Koby?ecka, M.; Leszczynski, J.; Rak, J. J. Chem. Phys. 2009, 131, 085103. doi: 10.1063/1.3204939
-
[20]
(20) Churchill, C. D. M.; Wetmore, S. D. J. Phys. Chem. B 2009, 113, 16046. doi: 10.1021/jp907887y
-
[21]
(21) Svozil, D.; Hobza, P.; Šponer, J. J. Phys. Chem. B 2010, 114, 1191.
-
[22]
(22) Sharma, P.; Lait, L. A.; Wetmore, S. D. Phys. Chem. Chem. Phys. 2013, 15, 2435. doi: 10.1039/c2cp43910g
-
[23]
(23) Sharma, P.; Lait, L. A.; Wetmore, S. D. Phys. Chem. Chem. Phys. 2013, 15, 15538. doi: 10.1039/c3cp52656a
-
[24]
(24) Šponer, J.; Florián, J.; Ng, H. L.; Šponer, J. E.; Špacková, N. Nucleic Acids Research 2000, 28, 4893. doi: 10.1093/nar/28.24.4893
-
[25]
(25) Yakovchuk, P.; Protozanova, E.; Frank-Kamenetskii, M. D. Nucleic Acids Research 2006, 34, 564. doi: 10.1093/nar/gkj454
-
[26]
(26) Vijayaraghavan, R.; Iz rodin, A.; Ganesh, V.; Surianarayanan, M.; MacFarlane, D. R. Angew. Chem. Int. Edit. 2010, 49, 1631. doi: 10.1002/anie.200906610
-
[27]
(27) Li, W.; Li, S.; Jiang, Y. J. Phys. Chem. A 2007, 111, 2193. doi: 10.1021/jp067721q
-
[28]
(28) Deev, V.; Collins, M. A. J. Chem. Phys. 2005, 122, 154102. doi: 10.1063/1.1879792
-
[29]
(29) Collins, M. A.; Deev, V. J. Chem. Phys. 2006, 125, 104104. doi: 10.1063/1.2347710
-
[30]
(30) Addicoat, M. A.; Collins, M. A. J. Chem. Phys. 2009, 131, 104103. doi: 10.1063/1.3222639
-
[31]
(31) Ganesh, V.; Dongare, R. K.; Balanarayan, P.; Gadre, S. R. J. Chem. Phys. 2006, 125, 104109. doi: 10.1063/1.2339019
-
[32]
(32) Deshmukh, M. M.; Gadre, S. R. J. Phys. Chem. A 2009, 113, 7927.
-
[33]
(33) Ahalkar, A. P.; Katouda, M.; Gadre, S. R.; Nagase, S. J. Comput. Chem. 2010, 31, 2405.
-
[34]
(34) Bettens, R. P. A.; Lee, A. M. J. Phys. Chem. A 2006, 110, 8777.
-
[35]
(35) Hua, W.; Fang, T.; Li, W.; Yu, J.; Li, S. J. Phys. Chem. A 2008, 112, 10864. doi: 10.1021/jp8026385
-
[36]
(36) Dong, H.; Hua, S.; Li, S. J. Phys. Chem. A 2009, 113, 1335. doi: 10.1021/jp8071525
-
[37]
(37) Hua, S.; Hua, W.; Li, S. J. Phys. Chem. A 2010, 114, 8126.
-
[38]
(38) Li, W. J. Chem. Phys. 2013, 138, 9.
-
[39]
(39) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.01; Gaussian Inc.:Wallingford, CT, 2009.
-
[40]
(40) Li, S.; Li, W.; Fang, T.; Ma, J.; Hua, W.; Hua, S.; Jiang, Y. Low- Scaling Quantum Chemistry (LSQC), Version 2.2; Nanjing University: Nanjing, 2012.
-
[41]
(41) http://www.rcsb.org/.
-
[42]
(42) Wu, Q.; Yang, W. T. J. Chem. Phys. 2002, 116, 515. doi: 10.1063/1.1424928
-
[43]
(43) Rapacioli, M.; Spiegelman, F.; Talbi, D.; Mineva, T.; ursot, A.; Heine, T.; Seifert, G. J. Chem. Phys. 2009, 130, 244304. doi: 10.1063/1.3152882
-
[1]
-
-
[1]
Yinglian LI , Chengcheng ZHANG , Xinyu ZHANG , Xinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087
-
[2]
Shuang Meng , Haixin Long , Zhou Zhou , Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008
-
[3]
Xinyu ZENG , Guhua TANG , Jianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374
-
[4]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[5]
Junqiao Zhuo , Xinchen Huang , Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100
-
[6]
Linhan Tian , Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056
-
[7]
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037
-
[8]
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
-
[9]
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
-
[10]
Jinghua Wang , Yanxin Yu , Yanbiao Ren , Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057
-
[11]
Rong Tian , Yadi Yang , Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064
-
[12]
Ji Qi , Jianan Zhu , Yanxu Zhang , Jiahao Yang , Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050
-
[13]
Hongyun Liu , Jiarun Li , Xinyi Li , Zhe Liu , Jiaxuan Li , Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070
-
[14]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
-
[15]
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
-
[16]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[17]
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
-
[18]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[19]
Di WU , Ruimeng SHI , Zhaoyang WANG , Yuehua SHI , Fan YANG , Leyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135
-
[20]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[1]
Metrics
- PDF Downloads(327)
- Abstract views(381)
- HTML views(7)