Citation: HUA Shu-Gui, JIN Hao, OUYANG Yong-Zhong. Contribution of Non-Covalent Interactions to the Gas-Phase Stability of the Double-Helix of B-DNA: A Density Functional Theory Study with GEBF Approach[J]. Acta Physico-Chimica Sinica, ;2015, 31(7): 1309-1314. doi: 10.3866/PKU.WHXB201505111 shu

Contribution of Non-Covalent Interactions to the Gas-Phase Stability of the Double-Helix of B-DNA: A Density Functional Theory Study with GEBF Approach

  • Received Date: 16 March 2015
    Available Online: 11 May 2015

    Fund Project: 江苏省自然科学基金(BK20130748) (BK20130748) 江苏省高校自然科学研究项目(13KJB150012) (13KJB150012) 江西省自然科学基金(20142BAB213010) (20142BAB213010)国家自然科学基金(21405013)资助项目 (21405013)

  • We employed the generalized energy-based fragmentation (GEBF) approach to investigate the gas-phase structures of B-DNA double-helices up to 10 base pairs at several theoretical levels. By comparing the results obtained using the M06-2X functional and other methods (including the B3LYP, B3LYP-vdW, and TPSS functionals), we found that the absence of stacking interactions could lead to the enlargement of the vertical distance between adjacent bases. The magnitude of this enlargement of the vertical distance quickly decreases as the length of the double-helix increases. The gas-phase stabilization of the double-helical structure of B-DNA is a cooperative effect, in which hydrogen bonding plays a more important role than stacking interaction does up to 10 base pairs.

  • 加载中
    1. [1]

      (1) Šponer, J.; Riley, K. E.; Hobza, P. Phys. Chem. Chem. Phys. 2008, 10, 2595. doi: 10.1039/b719370j

    2. [2]

      (2) Gil, A.; Branchadell, V.; Bertran, J.; Oliva, A. J. Phys. Chem. B 2009, 113, 4907. doi: 10.1021/jp809737c

    3. [3]

      (3) Banáš, P.; Mládek, A.; Otyepka, M.; Zgarbová, M.; Jure?ka, P.; Svozil, D.; Lankaš, F.; Šponer, J. J. Chem. Theory Comput. 2012, 8, 2448. doi: 10.1021/ct3001238

    4. [4]

      (4) Sedlák, R.; Jure?ka, P.; Hobza, P. J. Chem. Phys. 2007, 127, 075104. doi: 10.1063/1.2759207

    5. [5]

      (5) Pitoňák, M.; Neogrády, P.; Hobza, P. Phys. Chem. Chem. Phys. 2010, 12, 1369. doi: 10.1039/B919354E

    6. [6]

      (6) Riley, K. E.; Pionak, M.; Jurecka, P.; Hobza, P. Chem. Rev. 2010, 110, 5023. doi: 10.1021/cr1000173

    7. [7]

      (7) Zhang, Y.; Ma, N.; Wang, W. J. Theor. Comput. Chem. 2012, 11, 1165. doi: 10.1142/S0219633612500770

    8. [8]

      (8) Jones, G. J.; Robertazzi, A.; Platts, J. A. J. Phys. Chem. B 2013, 117, 3315. doi: 10.1021/jp400345s

    9. [9]

      (9) Wilson, K. A.; Kellie, J. L.; Wetmore, S. D. Nucleic Acids Res. 2014, 42, 6726. doi: 10.1093/nar/gku269

    10. [10]

      (10) Elstner, M.; Hobza, P.; Frauenheim, T.; Suhai, S.; Kaxiras, E. J. Chem. Phys. 2001, 114, 5149. doi: 10.1063/1.1329889

    11. [11]

      (11) ?erný, J.; Kabelá?, M.; Hobza, P. J. Am. Chem. Soc. 2008, 130, 16055. doi: 10.1021/ja805428q

    12. [12]

      (12) Cooper, V. R.; Thonhauser, T.; Langreth, D. C. J. Chem. Phys. 2008, 128, 204102. doi: 10.1063/1.2924133

    13. [13]

      (13) Cooper, V. R.; Thonhauser, T.; Puzder, A.; Schröder, E.; Lundqvist, B. I.; Langreth, D. C. J. Am. Chem. Soc. 2008, 130, 1305.

    14. [14]

      (14) Šponer, J.; Mládek, A.; Špa?ková, N.; Cang, X.; Cheatham, T.; Grimme, S. J. Am. Chem. Soc. 2013, 135, 9785. doi: 10.1021/ja402525c

    15. [15]

      (15) Barone, G.; Guerra, C.; Bickelhaupt, F. ChemistryOpen 2013, 2, 186. doi: 10.1002/open.v2.5/6

    16. [16]

      (16) Grunenberg, J.; Barone, G.; Spinello, A. J. Chem. Theory Comput. 2014, 10, 2901. doi: 10.1021/ct500329f

    17. [17]

      (17) Hesselmann, A.; Jansen, G.; Schütz, M. J. Am. Chem. Soc. 2006, 128, 11730. doi: 10.1021/ja0633363

    18. [18]

      (18) Fiethen, A.; Jansen, G.; Hesselmann, A.; Schütz, M. J. Am. Chem. Soc. 2008, 130, 1802. doi: 10.1021/ja076781m

    19. [19]

      (19) Koby?ecka, M.; Leszczynski, J.; Rak, J. J. Chem. Phys. 2009, 131, 085103. doi: 10.1063/1.3204939

    20. [20]

      (20) Churchill, C. D. M.; Wetmore, S. D. J. Phys. Chem. B 2009, 113, 16046. doi: 10.1021/jp907887y

    21. [21]

      (21) Svozil, D.; Hobza, P.; Šponer, J. J. Phys. Chem. B 2010, 114, 1191.

    22. [22]

      (22) Sharma, P.; Lait, L. A.; Wetmore, S. D. Phys. Chem. Chem. Phys. 2013, 15, 2435. doi: 10.1039/c2cp43910g

    23. [23]

      (23) Sharma, P.; Lait, L. A.; Wetmore, S. D. Phys. Chem. Chem. Phys. 2013, 15, 15538. doi: 10.1039/c3cp52656a

    24. [24]

      (24) Šponer, J.; Florián, J.; Ng, H. L.; Šponer, J. E.; Špacková, N. Nucleic Acids Research 2000, 28, 4893. doi: 10.1093/nar/28.24.4893

    25. [25]

      (25) Yakovchuk, P.; Protozanova, E.; Frank-Kamenetskii, M. D. Nucleic Acids Research 2006, 34, 564. doi: 10.1093/nar/gkj454

    26. [26]

      (26) Vijayaraghavan, R.; Iz rodin, A.; Ganesh, V.; Surianarayanan, M.; MacFarlane, D. R. Angew. Chem. Int. Edit. 2010, 49, 1631. doi: 10.1002/anie.200906610

    27. [27]

      (27) Li, W.; Li, S.; Jiang, Y. J. Phys. Chem. A 2007, 111, 2193. doi: 10.1021/jp067721q

    28. [28]

      (28) Deev, V.; Collins, M. A. J. Chem. Phys. 2005, 122, 154102. doi: 10.1063/1.1879792

    29. [29]

      (29) Collins, M. A.; Deev, V. J. Chem. Phys. 2006, 125, 104104. doi: 10.1063/1.2347710

    30. [30]

      (30) Addicoat, M. A.; Collins, M. A. J. Chem. Phys. 2009, 131, 104103. doi: 10.1063/1.3222639

    31. [31]

      (31) Ganesh, V.; Dongare, R. K.; Balanarayan, P.; Gadre, S. R. J. Chem. Phys. 2006, 125, 104109. doi: 10.1063/1.2339019

    32. [32]

      (32) Deshmukh, M. M.; Gadre, S. R. J. Phys. Chem. A 2009, 113, 7927.

    33. [33]

      (33) Ahalkar, A. P.; Katouda, M.; Gadre, S. R.; Nagase, S. J. Comput. Chem. 2010, 31, 2405.

    34. [34]

      (34) Bettens, R. P. A.; Lee, A. M. J. Phys. Chem. A 2006, 110, 8777.

    35. [35]

      (35) Hua, W.; Fang, T.; Li, W.; Yu, J.; Li, S. J. Phys. Chem. A 2008, 112, 10864. doi: 10.1021/jp8026385

    36. [36]

      (36) Dong, H.; Hua, S.; Li, S. J. Phys. Chem. A 2009, 113, 1335. doi: 10.1021/jp8071525

    37. [37]

      (37) Hua, S.; Hua, W.; Li, S. J. Phys. Chem. A 2010, 114, 8126.

    38. [38]

      (38) Li, W. J. Chem. Phys. 2013, 138, 9.

    39. [39]

      (39) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.01; Gaussian Inc.:Wallingford, CT, 2009.

    40. [40]

      (40) Li, S.; Li, W.; Fang, T.; Ma, J.; Hua, W.; Hua, S.; Jiang, Y. Low- Scaling Quantum Chemistry (LSQC), Version 2.2; Nanjing University: Nanjing, 2012.

    41. [41]

      (41) http://www.rcsb.org/.

    42. [42]

      (42) Wu, Q.; Yang, W. T. J. Chem. Phys. 2002, 116, 515. doi: 10.1063/1.1424928

    43. [43]

      (43) Rapacioli, M.; Spiegelman, F.; Talbi, D.; Mineva, T.; ursot, A.; Heine, T.; Seifert, G. J. Chem. Phys. 2009, 130, 244304. doi: 10.1063/1.3152882


  • 加载中
    1. [1]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    2. [2]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    3. [3]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    4. [4]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    5. [5]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    6. [6]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    7. [7]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    8. [8]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    11. [11]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    12. [12]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    13. [13]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    14. [14]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    15. [15]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    16. [16]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    17. [17]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    18. [18]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    19. [19]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    20. [20]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

Metrics
  • PDF Downloads(327)
  • Abstract views(382)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return