Citation: YUAN Jun-Hui, GAO Bo, WANG Wen, WANG Jia-Fu. First-Principles Calculations of the Electronic Structure and Optical Properties of Y-Cu Co-Doped ZnO[J]. Acta Physico-Chimica Sinica, ;2015, 31(7): 1302-1308. doi: 10.3866/PKU.WHXB201505081 shu

First-Principles Calculations of the Electronic Structure and Optical Properties of Y-Cu Co-Doped ZnO

  • Received Date: 8 January 2015
    Available Online: 8 May 2015

    Fund Project: 中央高校基本科研业务费专项资金(2014-zy-164)资助项目 (2014-zy-164)

  • Using the pseudo-potential plane-wave based on the density functional theory (DFT), the electronic structures and optical properties of intrinsic ZnO, Y-, Cu-, and Y-Cu co-doped ZnO were studied. The results show that the conductivity of ZnO can be improved by Y and Cu doping because of the increase in carrier concentration under the order of magnitude of the doping concentration in this paper. Y-Cu co-doping leads to degeneration and makes ZnO metallic. Y-doped ZnO can show enhanced light absorption in the ultraviolet region, while doping with Cu enhances absorption in the visible and near ultraviolet regions. Y-Cu co-doping greatly increases the absorption of visible and near ultraviolet regions owing to the synergistic effect between Y ions and Cu ions, which can be exploited to fabricate the opto-electronic devices.

  • 加载中
    1. [1]

      (1) Ryu, Y. R.; Zhu, S.; Budai, J. D.; Chandrasekhar, H. R.; Miceli, P. F.; White, H.W. J. Appl. Phys. 2000, 88, 201. doi: 10.1063/1.373643

    2. [2]

      (2) Zhou, Z.; Komori, T.; Ayukawa, T.; Yukawa, H.; Morinaga, M.; Koizumi, A.; Takeda, Y. Appl. Phys. Lett. 2005, 87, 091109. doi: 10.1063/1.2035867

    3. [3]

      (3) Lang, J.; Han, Q.; Yang, J.; Li, C. J. Appl. Phys. 2010, 107, 074302. doi: 10.1063/1.3318613

    4. [4]

      (4) Tang, Z. K.; Wong, G. K. L.; Yu, P. Appl. Phys. Lett. 1998, 72, 3270. doi: 10.1063/1.121620

    5. [5]

      (5) Shen, L.; Wu, R. Q.; Pan, H.; Peng, G.W.; Yang, M.; Sha, Z. D.; Feng, Y. P. Phys. Rev. B 2008, 78, 073306. doi: 10.1103/PhysRevB.78.073306

    6. [6]

      (6) Perkins, C. L.; Lee, S. H.; Li, X. N.; Asher, S. E.; Coutts, T. J. J. Appl. Phys. 2005, 97, 034907. doi: 10.1063/1.1847728

    7. [7]

      (7) Xia. C. H.; Zhou, M.; Han, X. Y.; Yin, P. F. Mater. Rev. 2011, 25, 11.

    8. [8]

      (8) Zhang, F. C.; Zhang, W. H.; Dong, J. T.; Zhang, Z. Y. Acta Phys. -Chim. Sin. 2011, 27 (10), 2326. [张富春, 张威虎, 董军堂, 张志勇. 物理化学学报, 2011, 27 (10), 2326.] doi: 10.3866/PKU.WHXB20111016

    9. [9]

      (9) Li, H. L.; Zhang, Z.; Lu, Y. B.; Huang, J. Z.; Zhang, Y.; Liu, R. X. Acta Phys. Sin. 2013, 62, 047101. [李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜. 物理学报, 2013, 62, 047101.]

    10. [10]

      (10) Yu, C. L.; Yang, K.; Yu, J. C.; Peng, P.; Cao, F. F.; Li, X.; Zhou, X. C. Acta Phys. -Chim. Sin. 2011, 27 (2), 505. [余长林, 杨凯, 余济美, 彭鹏, 操芳芳, 李鑫, 周晓春. 物理化学学报, 2011, 27 (2), 505.] doi: 10.3866/PKU.WHXB20110230

    11. [11]

      (11) Heo, S.; Sharma, S. K.; Lee, S.; Lee, Y.; Kim, C. M.; Lee, B.; Lee, H.; Kim, D. Y. Thin Solid Films 2014, 558, 27. doi: 10.1016/j.tsf.2014.02.025

    12. [12]

      (12) Zheng, J. H.; Song, J. L.; Jiang, Q.; Lian, J. S. Appl. Surf. Sci. 2012, 258, 6735. doi: 10.1016/j.apsusc.2012.03.010

    13. [13]

      (13) Hammad, T. M.; Salem, J. K.; Harrison, R. G. ACS Nano 2009, 4, 225.

    14. [14]

      (14) Atriabak, I.; Bueno, L. A.; Garcia, G. A. J. Mol. Catal. A: Chem. 2009, 300, 103. doi: 10.1016/j.molcata.2008.10.043

    15. [15]

      (15) Xia, C. H.; Wang, F.; Hu, C. L. J. Alloy. Compd. 2014, 589, 604. doi: 10.1016/j.jallcom.2013.11.066

    16. [16]

      (16) Zhang, Z.; Yi, J. B.; Ding, J.; Wong, L. M.; Seng, H. L.; Wang, S. J.; Tao, J. G.; Li, G. P.; Xing, G. Z.; Sum, T. C.; Huan, C. H. A.; Wu, T. J. Phys. Chem. C 2008, 112, 9579. doi: 10.1021/jp710837h

    17. [17]

      (17) Caglar, M.; Yakuphanoglu, F. Appl. Surf. Sci. 2012, 258, 3039. doi: 10.1016/j.apsusc.2011.11.033

    18. [18]

      (18) Anandan, S.; Muthukumaran, S.; Ashokkumar, M. Superlattice Microstruct. 2014, 74, 247. doi: 10.1016/j.spmi.2014.07.008

    19. [19]

      (19) Hohenberg, P.; Kohn, W. Phys. Rev. B 1964, 136, 864.

    20. [20]

      (20) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865

    21. [21]

      (21) He, J. F.; Zheng, S. K.; Zhou, P. L.; Shi, R. Q.; Yan, X. B. Acta Phys. Sin. 2014, 63, 046301. [何静芳, 郑树凯, 周鹏力, 史茹倩, 闫小兵. 物理学报, 2014, 63, 046301.]

    22. [22]

      (22) Cheng, L.; Zhang, Z. Y.; Shao, J. X. Acta Phys. -Chim. Sin. 2011, 27 (4), 846. [成丽, 张子英, 邵建新. 物理化学学报, 2011, 27 (4), 846.] doi: 10.3866/PKU.WHXB20110324

    23. [23]

      (23) Zhang, X. D.; Guo, M. L.; Li, W. X.; Liu, C. L. J. Appl. Phys. 2008, 103, 063721. doi: 10.1063/1.2901033

    24. [24]

      (24) Anandan, S.; Muthukumaran, S. Opt. Mater. 2013, 35, 2241. doi: 10.1016/j.optmat.2013.06.009

    25. [25]

      (25) Ma, S. Y.; Mao, L. M.; Ma, H.; Shi, X. F.; Zhou, T. T.; Ding, J. J. J. Northweat Normal Univ. 2010, 46, 37. [马书懿, 毛雷鸣, 马慧, 史新福, 周婷婷, 丁继军. 西北师范大学学报, 2010, 46, 37.]


  • 加载中
    1. [1]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    2. [2]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    3. [3]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    4. [4]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    5. [5]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    6. [6]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    7. [7]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    8. [8]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    9. [9]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    10. [10]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    11. [11]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    12. [12]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    13. [13]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    14. [14]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    15. [15]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    16. [16]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    17. [17]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    18. [18]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    19. [19]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    20. [20]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

Metrics
  • PDF Downloads(319)
  • Abstract views(546)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return