Citation: XU Zhen, CHEN Yu, ZHANG Zhao, ZHANG Jian-Qing. Progress of Research on Underpotential Deposition—— I. Theory of Underpotential Deposition[J]. Acta Physico-Chimica Sinica, ;2015, 31(7): 1219-1230. doi: 10.3866/PKU.WHXB201505071 shu

Progress of Research on Underpotential Deposition—— I. Theory of Underpotential Deposition

  • Received Date: 23 March 2015
    Available Online: 7 May 2015

    Fund Project: 国家自然科学基金(21273199, 21073162) (21273199, 21073162)教育部博士点基金(20130101110047)项目资助 (20130101110047)

  • Underpotential deposition (upd) has been a hotspot in the field of electrochemical research throughout the years owing to its significant theoretical and applied research value. Theoretical research on upd primarily centers around the relations and rules of interaction among deposition substrates, deposition species, and anions (or other organic additives) during upd process. In this paper, the developments in theoretical research in recent years on upd on both the local and international levels are systematically summarized mainly from two viewpoints, namely, thermodynamics and kinetics. With regard to the thermodynamics of upd process, introductory comments and mathematical formulas are summarized from four aspects, i.e., underpotential shift (ΔEupd), electrosorption valency (γ), influence of temperature, and electrochemical adsorption isotherms. The applications and analyses of those related mathematical formulas are also presented in detail. In terms of the kinetics of upd process, nucleation and growth phenomena are mainly presented. We summarize the relevant mathematical models, and additionally introduce research studies on the characteristics of upd kinetics based on these mathematical models. Furthermore, this paper presents an outline of computational chemistry methods and application achievements concerning upd research. Finally, the theoretical research status of upd is presented, giving an overall view of the development trend.

  • 加载中
    1. [1]

      (1) Pangarov, N. Electrochim. Acta 1983, 28 (6), 763. doi: 10.1016/0013-4686(83)85145-7

    2. [2]

      (2) Huang, M. H.; Henry, J. B.; Fortgang, P.; Henig, J.; Plumeré, N.; Bandarenka, A. S. RSC Adv. 2012, 2 (29), 10994. doi: 10.1039/c2ra21558f

    3. [3]

      (3) Hevesy, G. V. Physik. Z. 1912, 13, 715.

    4. [4]

      (4) Xing, X. K.; Bae, I. T.; Scherson, D. A. Electrochim. Acta 1995, 40 (1), 29. doi: 10.1016/0013-4686(94)00251-U

    5. [5]

      (5) Zhu, W.; Yang, J. Y.; Zhou, D. X.; Bao, S. Q.; Fan, X. A.; Duan, X. K. Electrochim. Acta 2007, 52 (11), 3660. doi: 10.1016/j.electacta.2006.10.028

    6. [6]

      (6) Kondo, T.; Takakusagi, S.; Uosaki, K. Electrochem. Commun. 2009, 11 (4), 804. doi: 10.1016/j.elecom.2009.01.036

    7. [7]

      (7) Kirowa-Eisner, E.; Bonfil, Y.; Tzur, D.; Gileadi, E. J. Electroanal. Chem. 2003, 552, 171. doi: 10.1016/S0022-0728 (03)00181-5

    8. [8]

      (8) Paddon, C. A.; Compton, R. G. J. Phys. Chem. C 2007, 111 (26), 9016. doi: 10.1021/jp073304h

    9. [9]

      (9) Fu, Y. C.; Yan, J.W.; Wang, Y.; Tian, J. H.; Zhang, H. M.; Xie, Z. X.; Mao, B.W. J. Phys. Chem. C 2007, 111 (28), 10467. doi: 10.1021/jp0711621

    10. [10]

      (10) Gasparotto, L. H. S.; Borisenko, N.; Bocchi, N.; El Abedin, S. Z.; Endres, F. Phys. Chem. Chem. Phys. 2009, 11 (47), 11140. doi: 10.1039/b916809e

    11. [11]

      (11) Rosário, A. V.; Santos, M. C.; Mascaro, L. H.; Bulhões, L. O. S.; Pereira, E. C. Thin Solid Films 2010, 518 (10), 2669. doi: 10.1016/j.tsf.2009.08.035

    12. [12]

      (12) Bouamrane, F.; Tadjeddine, A.; Tenne, R.; Butler, J. E.; Kalish, R.; Levy-Clement, C. J. Phys. Chem. B 1998, 102 (1), 134. doi: 10.1021/jp971516g

    13. [13]

      (13) Su, X.; Zhan, X.; Hinds, B. J. J. Mater. Chem. 2012, 22 (16), 7979. doi: 10.1039/c2jm15395e

    14. [14]

      (14) Lastraioli, E.; Loglio, F.; Innocenti, M.; Carlà, F.; Foresti, M. L. ECS Trans. 2010, 25 (34), 17. doi: 10.1149/1.3335488

    15. [15]

      (15) Zhang, X.; Shi, X. Z.; Ye, W. C.; Ma, C. L.; Wang, C. M. Appl. Phys. A: Mater. Sci. Process. 2009, 94 (2), 381. doi: 10.1007/s00339-008-4815-5

    16. [16]

      (16) Biçer, M.; Ayd1n, A. O.; ?i?man, ?. Electrochim. Acta 2010, 55 (11), 3749. doi: 10.1016/j.electacta.2010.02.015

    17. [17]

      (17) Loglio, F.; Innocenti, M.; Jarek, A.; Caporali, S.; Pasquini, I.; Foresti, M. L. J. Electroanal. Chem. 2010, 638 (1), 15. doi: 10.1016/j.jelechem.2009.10.027

    18. [18]

      (18) Alanyal?o?lu, M.; Bayrakçeken, F.; Demir, Ü. Electrochim. Acta 2009, 54 (26), 6554. doi: 10.1016/j.electacta.2009.06.056

    19. [19]

      (19) Gao, L. X.; Wang, L. N.; Qi, T.; Yu, J. Acta Phys. -Chim. Sin. 2012, 28 (1), 111. [高丽霞, 王丽娜, 齐涛, 余江. 物理化学学报, 2012, 28 (1), 111.] doi: 10.3866/PKU.WHXB201228111

    20. [20]

      (20) Li, M.; Sun, T. T.; Liu, B.; Han, W.; Sun, Y.; Zhang, M. L. Acta Phys. -Chim. Sin. 2015, 31 (2), 309. [李梅, 孙婷婷, 刘斌, 韩伟, 孙杨, 张密林. 物理化学学报, 2015, 31 (2), 309.] doi: 10.3866/PKU.WHXB201412182

    21. [21]

      (21) Xue, Y.; Zhou, Z. P.; Yan, Y. D.; Zhang, M. L.; Li, X.; Ji, D. B.; Han, W.; Zhang, M. Acta Phys. -Chim. Sin. 2014, 30 (9), 1674. [薛云, 周志萍, 颜永得, 张密林, 李星, 纪德彬, 韩伟, 张萌. 物理化学学报, 2014, 30 (9), 1674.] doi: 10.3866/PKU.WHXB201407022

    22. [22]

      (22) Nicic, I.; Liang, J.; Cammarata, V.; Alanyalioglu, M.; Demir, U.; Shannon, C. J. Phys. Chem. B 2002, 106 (47), 12247. doi: 10.1021/jp026625w

    23. [23]

      (23) Hölzle, M. H.; Retter, U.; Kolb, D. M. J. Electroanal. Chem. 1994, 371 (1-2), 101. doi: 10.1016/0022-0728(93)03235-H

    24. [24]

      (24) Sibert, E.; Wang, L.; De Santis, M.; Soldo-Olivier, Y. Electrochim. Acta 2014, 135, 594. doi: 10.1016/j.electacta.2014.04.168

    25. [25]

      (25) Lamy-Pitara, E.; Elouazzani-Benhima, L.; Barbier, J.; Cahoreau, M.; Caisso, J. J. Electroanal. Chem. 1994, 372 (1-2), 233. doi: 10.1016/0022-0728(93)03256-O

    26. [26]

      (26) Garcia, S. G.; Salinas, D. R.; Staikov, G. Surf. Sci. 2005, 576 (1-3), 9. doi: 10.1016/j.susc.2004.11.037

    27. [27]

      (27) Hepel, M.; Kanige, K.; Bruckenstein, S. Langmuir 1990, 6 (6), 1063. doi: 10.1021/la00096a006

    28. [28]

      (28) Sackmann, J.; Bunk, A.; Pötzschke, R. T.; Staikov, G.; Lorenz, W. J. Electrochim. Acta 1998, 43 (19-20), 2863. doi: 10.1016/S0013-4686(98)00027-9

    29. [29]

      (29) Mendoza-Huizar, L. H.; Robles, J.; Palomar - Pardavé, M. J. Electroanal. Chem. 2002, 521 (1-2), 95. doi: 10.1016/S0022-0728(02)00659-9

    30. [30]

      (30) Mendoza-Huizar, L. H.; Robles, J.; Palomar - Pardavé, M. J. Electroanal. Chem. 2003, 545, 39. doi: 10.1016/S0022-0728(03)00087-1

    31. [31]

      (31) Staikov, G.; García, S. G.; Salinas, D. R. ECS Trans. 2010, 25 (34), 3. doi: 10.1149/1.3335487

    32. [32]

      (32) Popov, B. N.; Zheng, G.; White, R. E. Corrosion Sci. 1994, 36 (12), 2139. doi: 10.1016/0010-938X(94)90012-4

    33. [33]

      (33) Zheng, G.; Popov, B. N.; White, R. E. J. Electrochem. Soc. 1994, 141 (5), 1220. doi: 10.1149/1.2054899

    34. [34]

      (34) Kazemi, R.; Kiani, A. Int. J. Hydrog. Energy 2012, 37 (5), 4098. doi: 10.1016/j.ijhydene.2011.11.147

    35. [35]

      (35) Kuttiyiel, K. A.; Sasaki, K.; Choi, Y.; Su, D.; Liu, P.; Adzic, R. R. Energy Environ. Sci. 2012, 5 (1), 5297. doi: 10.1039/c1ee02067f

    36. [36]

      (36) Liu, J. P.; Zhou, H. H.; Huang, J. T.; Huang, Z. Y.; Zeng, F. Y.; Kuang, Y. F. Int. J. Hydrog. Energy 2012, 37 (22), 16764. doi: 10.1016/j.ijhydene.2012.08.130

    37. [37]

      (37) Ni?anc?, F. B.; Öznülüer, T.; Demir, Ü. Electrochim. Acta 2013, 108, 281. doi: 10.1016/j.eleetacta.2013.06.135

    38. [38]

      (38) Köse, H.; Biçer, M.; Tütüno?lu, Ç.; Ayd?n, A. O.; ?i?man, ?. Electrochim. Acta 2009, 54 (6), 1680. doi: 10.1016/j.electacta.2008.09.059

    39. [39]

      (39) ?i?man, ?.; Demir, Ü. J. Electroanal. Chem. 2011, 651 (2), 222. doi: 10.1016/j.jelechem.2010.12.005

    40. [40]

      (40) Herzog, G.; Arrigan, D.W. M. Electroanalysis 2003, 15 (15-16), 1302. doi: 10.1002/elan.200302812

    41. [41]

      (41) Herzog, G.; Arrigan, D.W. M. TrAC, Trends Anal. Chem. 2005, 24 (3), 208. doi: 10.1016/j.trac.2004.11.014

    42. [42]

      (42) Orozco, J.; Fernández - Sánchez, C.; Jiménez - Jorquera, C. Environ. Sci. Technol. 2008, 42 (13), 4877. doi: 10.1021/es8005964

    43. [43]

      (43) Huang, J. F. Talanta 2009, 77 (5), 1694. doi: 10.1016/j.talanta.2008.10.005

    44. [44]

      (44) Sivasubramanian, R.; Sangaranarayanan, M. V. Talanta 2011, 85 (4), 2142. doi: 10.1016/j.talanta.2011.07.057

    45. [45]

      (45) Oyamatsu, D.; Kanemoto, H.; Kuwabata, S.; Yoneyama, H. J. Electroanal. Chem. 2001, 497 (1-2), 97. doi: 10.1016/S0022-0728(00)00459-9

    46. [46]

      (46) Lin, S. Y.; Tsai, T. K.; Lin, C. M.; Chen, C. H.; Chan, Y. C.; Chen, H.W. Langmuir 2002, 18 (14), 5473. doi: 10.1021/la0157364

    47. [47]

      (47) Gebregziabiher, D. K.; Kim, Y. G.; Thambidurai, C.; Ivanova, V.; Haumesser, P. H.; Stickney, J. L. J. Cryst. Growth 2010, 312 (8), 1271. doi: 10.1016/j.jcrysgro.2009.11.038

    48. [48]

      (48) Lin, S. X.; Shi, X. Z.; Zhang, X.; Kou, H. H.; Wang, C. M. Appl. Surf. Sci. 2010, 256 (13), 4365. doi: 10.1016/j.apsusc.2010.02.032

    49. [49]

      (49) Innocenti, M.; Bellandi, S.; Lastraioli, E.; Loglio, F.; Foresti, M. Langmuir 2011, 27 (18), 11704. doi: 10.1021/la202174j

    50. [50]

      (50) Innocenti, M.; Zangari, G.; Zafferoni, C.; Bencistà, I.; Becucci, L.; Lavacchi, A.; Di Benedetto, F.; Bellandi, S.; Vizza, F.; Foresti, M. L. J. Power Sources 2013, 241, 80. doi: 10.1016/j.jpowsour.2013.04.111

    51. [51]

      (51) Wang, M. Y.; Wang, Z.; Guo, Z. C. Acta Phys.-Chim. Sin. 2009, 25 (5), 883. [王明涌, 王志, 郭占成. 物理化学学报, 2009, 25 (5), 883.] doi: 10.3866/PKU.WHXB20090511

    52. [52]

      (52) Herrero, E.; Buller, L. J.; Abruna, H. D. Chem. Rev. 2001, 101 (1), 1897. doi: 10.1021/cr9600363

    53. [53]

      (53) Anjos, D. M.; Rigsby, M. A.; Wieckowski, A. J. Electroanal. Chem. 2010, 639 (1-2), 8. doi: 10.1016/j.jelechem.2009.10.003

    54. [54]

      (54) Sudha, V.; Sangaranarayanan, M. V. J. Phys. Chem. B 2002, 106 (10), 2699. doi: 10.1021/jp013544b

    55. [55]

      (55) Sudha, V.; Sangaranarayanan, M. V. J. Phys. Chem. B 2003, 107 (16), 3907. doi: 10.1021/jp027818m

    56. [56]

      (56) Sudha, V.; Sangaranarayanan, M. V. J. Chem. Sci. 2005, 117 (3), 207. doi: 10.1007/BF02709289

    57. [57]

      (57) Kolb, D. M.; Przasnyski, M.; Gerischer, H. J. Electroanal. Chem. Interfacial Electrochem. 1974, 54 (1), 25. doi: 10.1016/0368-1874(74)85093-8

    58. [58]

      (58) Campbell, F.W.; Compton, R. G. Int. J. Electrochem. Sci 2010, 5 (3), 407.

    59. [59]

      (59) Campbell, F.W.; Zhou, Y. G.; Compton, R. G. New J. Chem. 2010, 34 (2), 187. doi: 10.1039/b9nj00669a

    60. [60]

      (60) Zhou, Y. G.; Rees, N. V.; Compton, R. G. ChemPhysChem 2011, 12 (11), 2085. doi: 10.1002/cphc.201100282

    61. [61]

      (61) Schultze, J.W.; Vetter, K. J. J. Electroanal. Chem. Interfacial Electrochem. 1973, 44 (1), 63.

    62. [62]

      (62) Swathirajan, S.; Bruckenstein, S. J. Electrochem. Soc. 1982, 129 (6), 1202. doi: 10.1149/1.2124087

    63. [63]

      (63) Swathirajan, S.; Bruckenstein, S. Electrochim. Acta 1983, 28 (7), 865. doi: 10.1016/0013-4686(83)85162-7

    64. [64]

      (64) Swathirajan, S.; Bruckenstein, S. J. Electroanal. Chem. Interfacial Electrochem. 1983, 146 (1), 137. doi: 10.1016/S0022-0728(83)80117-X

    65. [65]

      (65) Szabó, S. Int. Rev. Phys. Chem. 1991, 10 (2), 207. doi: 10.1080/01442359109353258

    66. [66]

      (66) Ad?i?, R. R.; Minevski, L. V. Electrochim. Acta 1987, 32 (1), 125. doi: 10.1016/0013-4686(87)87020-2

    67. [67]

      (67) Salie, G.; Bartels, K. Electrochim. Acta 1994, 39 (8-9), 1057. doi: 10.1016/0013-4686(94)E0020-Z

    68. [68]

      (68) Santos, M. C.; Mascaro, L. H.; Machado, S. A. S. Electrochim. Acta 1998, 43 (16-17), 2263. doi: 10.1016/S0013-4686(97)10171-2

    69. [69]

      (69) de Levie, R. J. Electroanal. Chem. 2004, 562 (2), 273. doi: 10.1016/j.jelechem.2003.08.027

    70. [70]

      (70) Zolfaghari, A.; Jerkiewicz, G. J. Electroanal. Chem. 1999, 467 (1-2), 177. doi: 10.1016/S0022-0728(99)00084-4

    71. [71]

      (71) Radovic-Hrapovic, Z.; Jerkiewicz, G. J. Electroanal. Chem. 2001, 499 (1), 61. doi: 10.1016/S0022-0728(00)00478-2

    72. [72]

      (72) Zolfaghari, A.; Jerkiewicz, G. J. Electroanal. Chem. 1997, 422 (1-2), 1. doi: 10.1016/S0022-0728(97)00001-6

    73. [73]

      (73) Abaci, S.; Zhang, L. S.; Shannon, C. J. Electroanal. Chem. 2004, 571 (2), 169. doi: 10.1016/j.jelechem.2004.05.006

    74. [74]

      (74) Vra?ar, L.; Krstaji?, N.; Neophytides, S. G.; Jakši?, J. Int. J. Hydrog. Energy 2004, 29 (8), 835. doi: 10.1016/S0360-3199(03)00154-X

    75. [75]

      (75) Blais, S.; Jerkiewicz, G.; Herrero, E.; Feliu, J. M. J. Electroanal. Chem. 2002, 519 (1-2), 111. doi: 10.1016/S0022-0728(01)00735-5

    76. [76]

      (76) Jerkiewicz, G.; Perreault, F.; Radovic-Hrapovic, Z. J. Phys. Chem. C 2009, 113 (28), 12309. doi: 10.1021/jp900478u

    77. [77]

      (77) Etzel, K. D.; Bickel, K. R.; Schuster, R. Rev. Sci. Instrum. 2010, 81 (3), 034101. doi: 10.1063/1.3309785

    78. [78]

      (78) Schuster, R.; Rösch, R.; Timm, A. E. Z. Phys. Chem. 2007, 221 (11-12), 1479. doi: 10.1524/zpch.2007.221.11-12.1479

    79. [79]

      (79) Etzel, K. D.; Bickel, K. R.; Schuster, R. ChemPhysChem 2010, 11 (7), 1416. doi: 10.1002/cphc.200900981

    80. [80]

      (80) Swathirajan, S.; Mizota, H.; Bruckenstein, S. J. Phys. Chem. 1982, 86 (13), 2480. doi: 10.1021/j100210a048

    81. [81]

      (81) Lasia, A. J. Electroanal. Chem. 2004, 562 (1), 23. doi: 10.1016/j.jelechem.2003.07.033

    82. [82]

      (82) Chun, J. H.; Ra, K. H.; Kim, N. Y. Int. J. Hydrog. Energy 2001, 26 (9), 941. doi: 10.1016/S0360-3199(01)00028-3

    83. [83]

      (83) Markovic, N. M.; Grgur, B. N.; Ross, P. N. J. Phys. Chem. B 1997, 101 (27), 5405. doi: 10.1021/jp970930d

    84. [84]

      (84) Chang, B. Y.; Ahn, E.; Park, S. M. J. Phys. Chem. C 2008, 112 (43), 16902. doi: 10.1021/jp805960j

    85. [85]

      (85) Zolfaghari, A.; Jerkiewicz, G.; Chrzanowski, W.; Wieckowski, A. J. Electrochem. Soc. 1999, 146 (11), 4158. doi: 10.1149/1.1392607

    86. [86]

      (86) Zinola, C. F.; Rodríguez, J. J. Solid State Electrochem. 2002, 6 (6), 412. doi: 10.1007/s100080100242

    87. [87]

      (87) Quaiyyum, M. D.; Aramata, A.; Moniwa, S.; Taguchi, S.; Enyo, M. J. Electroanal. Chem. 1994, 373 (1-2), 61. doi: 10.1016/0022-0728(94)03268-8

    88. [88]

      (88) Palomar - Pardavé, M.; nzález, I.; Batina, N. J. Phys. Chem. B 2000, 104 (15), 3545. doi: 10.1021/jp9931861

    89. [89]

      (89) Arbib, M.; Zhang, B.; Lazarov, V.; Stoychev, D.; Milchev, A.; Buess-Herman, C. J. Electroanal. Chem. 2001, 510 (1-2), 67. doi: 10.1016/S0022-0728(01)00545-9

    90. [90]

      (90) Palomar-Pardavé, M.; Garfias-García, E.; Romero-Romo, M.; Ramírez-Silva, M. T.; Batina, N. Electrochim. Acta 2011, 56 (27), 10083. doi: 10.1016/j.electacta.2011.08.105

    91. [91]

      (91) Quayum, M. E.; Ye, S.; Uosaki, K. J. Electroanal. Chem. 2002, 520 (1-2), 126. doi: 10.1016/S0022-0728(02)00643-5

    92. [92]

      (92) Palomar-Pardavé, M.; nzález, I.; Soto, A. B.; Arce, E. M. J. Electroanal. Chem. 1998, 443 (1), 125. doi: 10.1016/S0022-0728(97)00496-8

    93. [93]

      (93) Armstrong, R. D.; Harrison, J. A. J. Electrochem. Soc. 1969, 116 (3), 328. doi: 10.1149/1.2411839

    94. [94]

      (94) Guo, L.; Hu, K.; Li, W. P.; Zhang, S. T. Chin. J. Appl. Chem. 2013, 30 (2), 214. [郭雷, 胡舸, 李文坡, 张胜涛. 应用化学, 2013, 30 (2), 214.] doi: 10.3724/SP.J.1095.2013.20090

    95. [95]

      (95) Alanyal?o?lu, M.; Çakal, H.; Öztürk, A. E.; Demir, Ü. J. Phys. Chem. B 2001, 105 (43), 10588. doi: 10.1021/jp004227s

    96. [96]

      (96) Hölzle, M. H.; Zwing, V.; Kolb, D. M. Electrochim. Acta 1995, 40 (10), 1237. doi: 10.1016/0013-4686(95)00055-J

    97. [97]

      (97) Martínez-Ruíz, A.; Palomar-Pardavé, M.; Valenzuela-Benavides, J.; Farías, M. H.; Batina, N. J. Phys. Chem. B 2003, 107 (42), 11660. doi: 10.1021/jp027197x

    98. [98]

      (98) Mendoza-Huizar, L. H.; Rios-Reyes, C. H. J. Solid State Electrochem. 2011, 15 (4), 737. doi: 10.1007/s10008-010-1146-1

    99. [99]

      (99) Leiva, E. Electrochim. Acta 1996, 41 (14), 2185. doi: 10.1016/0013-4686(96)00050-3

    100. [100]

      (100) Sanchez, C. G.; Del Popolo, M. G.; Leiva, E. P. M. Surf. Sci. 1999, 421 (1-2), 59. doi: 10.1016/S0039-6028(98)00818-8

    101. [101]

      (101) Sanchez, C. G.; Leiva, E. P. M.; Kohanoff, J. Langmuir 2001, 17 (7), 2219. doi: 10.1021/la001639j

    102. [102]

      (102) Oviedo, O. A.; Leiva, E. P. M.; Rojas, M.I. Electrochim. Acta 2006, 51 (17), 3526. doi: 10.1016/j.electacta.2005.10.008

    103. [103]

      (103) Guo, L.; Tan, J. H.; Li, W. P.; Hu, K.; Zhang, S. T. Prog. Chem. 2013, 25 (11), 1842. [郭雷, 谭建红, 李文坡, 胡舸, 张胜涛. 化学进展, 2013, 25 (11), 1842.] doi: 10.7536/PC130148

    104. [104]

      (104) Újfalussy, B.; Szunyogh, L.; Bruno, P.; Weinberger, P. Phys. Rev. lett. 1996, 77 (9), 1805. doi: 10.1103/PhysRevLett.77.1805

    105. [105]

      (105) Oviedo, O. A.; Leiva, E. P. M.; Mariscal, M. M. Phys. Chem. Chem. Phys. 2008, 10 (24), 3561. doi: 10.1039/b801838c

    106. [106]

      (106) Oviedo, O. A.; Mariscal, M. M.; Leiva, E. P. M. Electrochim. Acta 2010, 55 (27), 8244. doi: 10.1016/j.electacta.2010.03.059

    107. [107]

      (107) Mariscal, M. M.; Oviedo, O. A.; Leiva, E. P. M. J. Mater. Res. 2012, 27 (14), 1777. doi: 10.1557/jmr.2012.132

    108. [108]

      (108) Oviedo, O. A.; Negre, C. F. A.; Mariscal, M. M.; Sánchez, C. G.; Leiva, E. P. M. Electrochem. Commun. 2012, 16 (1), 1. doi: 10.1016/j.elecom.2011.12.013

    109. [109]

      (109) Oviedo, O. A.; Reinaudi, L.; Leiva, E. P. M. Electrochem. Commun. 2012, 21, 14. doi: 10.1016/j.elecom.2012.05.001

    110. [110]

      (110) Oviedo, O. A.; Reinaudi, L.; Mariscal, M. M.; Leiva, E. P. M. Electrochim. Acta 2012, 76, 424. doi: 10.1016/j.electacta.2012.05.055


  • 加载中
    1. [1]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    2. [2]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    3. [3]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    4. [4]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    5. [5]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    6. [6]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    7. [7]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    8. [8]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    9. [9]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    10. [10]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    11. [11]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    12. [12]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    13. [13]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    14. [14]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    15. [15]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    16. [16]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    17. [17]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    18. [18]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    19. [19]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    20. [20]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

Metrics
  • PDF Downloads(607)
  • Abstract views(914)
  • HTML views(118)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return