Citation: WANG Ji-Qian, SUN Ying-Jie, DAI Jing-Ru, ZHAO Yu-Rong, CAO Mei-Wen, WANG Dong, XU Hai. Effects of Alkyl Chain Length and Peptide Charge Distribution on Self-Assembly and Hydrogelation of Lipopeptide Amphiphiles[J]. Acta Physico-Chimica Sinica, ;2015, 31(7): 1365-1373. doi: 10.3866/PKU.WHXB201505051
-
The self-assembly and hydrogelation of two series of lipopeptide amphiphiles, CnV3K2 (n=12, 14, 16) and CmKV3K (m=14, 16), were studied to determine the effects of alkyl chain length and peptide charge distribution. Both the transmission electron microscopy (TEM) and atomic force microscopy (AFM) results showed that all lipopeptide molecules in both series self-assembled into nanotapes with a bilayer structure. The width of the nanotapes decreased with increasing alkyl chain lengths. At a given alkyl chain length, the width of the CmKV3K nanotapes was wider than that of the CnV3K2 nanotapes. Based on the circular dichroism (CD) spectra of the nanotapes, all three CnV3K2 molecules adopted a secondary structure of β sheet. In contrast, the secondary structure of the CmKV3K nanotapes comprised a mixture of α helix and β sheet. For C14KV3K, the content of the α helix structures was higher than that of the β sheet structures. Conversely, for C16KV3K, the content of the β sheet was higher than that of the α helix structures. The nanotapes of lipopeptides with long alkyl chains were narrower than those with short chains, suggesting that the increased alkyl chain hydrophobicity inhibited lateral stacking of β sheets. When compared with CnV3K2, of which the two positive charges are arranged at the carbon terminal, the separate arrangement of the two positive charges in CmKV3K reduced electrostatic repulsion and favored lateral stacking of β sheets to produce wider nanotapes. The rheological data showed that all lipopeptides formed self-supporting hydrogels at 10 mmol·L-1 and pH 8.4. The hydrogel strength of the lipopeptides with different alkyl chain lengths was nearly the same within a given series. Furthermore, the hydrogel strength of the lipopeptides in the CmKV3K series was higher than that of the lipopeptides in the CnV3K2 series. The results indicated that the hydrogel rheological property was more influenced by charge arrangement at the peptide segment than by the alkyl chain length. Also, pH influenced to a great extent the self-assembly of the lipopeptides. The lipopeptides in the CmKV3K series were more sensitive to pH than those in the CnV3K2 series.
-
-
[1]
(1) Jonker, A. M.; Löwik, D.W. P. M.; Van Hest, J. C. M. Chem. Mater. 2012, 24, 759. doi: 10.1021/cm202640w
-
[2]
(2) Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418. doi: 10.1126/science.1070821
-
[3]
(3) Zhang, S. Nat. Biotechnol. 2003, 21, 1171. doi: 10.1038/nbt874
-
[4]
(4) Fairman, R.; Åkerfeldt, K. S. Curr. Opin. Struc. Biol. 2005, 15, 453. doi: 10.1016/j.sbi.2005.07.005
-
[5]
(5) Zhao, X.; Pan, F.; Xu, H.; Yaseen, M.; Shan, H.; Hauser, C. A. E.; Zhang, S.; Lu, J. R. Chem. Soc. Rev. 2010, 39, 3480. doi: 10.1039/b915923c
-
[6]
(6) Gao, Y.; Zhao, F.; Wang, Q.; Zhang, Y.; Xu, B. Chem. Soc. Rev. 2010, 39, 3425. doi: 10.1039/b919450a
-
[7]
(7) Hamley, I.W. Soft Matter 2011, 7, 4122 doi: 10.1039/c0sm01218a
-
[8]
(8) Yan, C.; Pochan, D. J. Chem. Soc. Rev. 2010, 39, 3258.
-
[9]
(9) Reder-Christ, K.; Schmidt, Y.; Dörr, M.; Sahl, H. G.; Josten, M.; Raaijmakers, J. M.; Gross, H.; Bendas, G. BBA-Biomembranes2012, 1818, 566. doi: 10.1016/j.bbamem.2011.08.007
-
[10]
(10) Jacques, P. Soberon-Chavez, G. (Ed.); Surfactin and Other Lipopeptides from Bacillus spp; In Biosurfactants Microbiology Monographs, Vol. 20; Springer-Verlag: Berlin Heidelberg, 2011, p. 57.
-
[11]
(11) Makovitzki, A.; Avrahami, D.; Shai, Y. P. Natl. Acad. Sci. U. S. A. 2006, 103, 15997. doi: 10.1073/pnas.0606129103
-
[12]
(12) Dehsorkhi, A.; Castelletto, V.; Hamley, I.W. J. Pept. Sci. 2014, 20, 453. doi: 10.1002/psc.v20.7
-
[13]
(13) Newcomb, C. J.; Sur, S.; Ortony, J. H.; Lee, O. S.; Matson, J. B.; Boekhoven, J.; Yu, J. M.; Schatz, G. C.; Stupp, S. I. Nat. Commun. 2014, 5, Article number 3321.
-
[14]
(14) Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Science 2001, 294, 1684. doi: 10.1126/science.1063187
-
[15]
(15) Hartgerink, J. D.; Beniash, E.; Stupp, S. I. P. Natl. Acad. Sci. U. S. A. 2002, 99, 5133. doi: 10.1073/pnas.072699999
-
[16]
(16) Mart, R. J.; Osborne, R. D.; Stevens, M. M.; Ulijn, R. V. Soft Matter 2006, 2, 822. doi: 10.1039/b607706d
-
[17]
(17) Cui, H.; Muraoka, T.; Cheetham, A. G.; Stupp, S. I. Nano Lett. 2009, 9, 945. doi: 10.1021/nl802813f
-
[18]
(18) Cui, H. G.; Pashuck, E. T.; Velichko, Y. S.; Weigand, S. J.; Cheetham, A. G.; Newcomb, C. J.; Stupp, S. I. Science 2010, 327, 555. doi: 10.1126/science.1182340
-
[19]
(19) Swanekamp, R. J.; DiMaio, J. T. M.; Bowerman, C. J.; Nilsson, B. L. J. Am. Chem. Soc. 2012, 134, 5556. doi: 10.1021/ja301642c
-
[20]
(20) Debnath, S.; Roy, S.; Ulijn, R. V. J. Am. Chem. Soc. 2013, 135, 16789. doi: 10.1021/ja4086353
-
[21]
(21) Cheetham, A. G.; Zhang, P. C.; Lin, Y. A.; Lock, L. L.; Cui, H. G. J. Am. Chem. Soc. 2013, 135, 2907. doi: 10.1021/ja3115983
-
[22]
(22) Hamley, I.W. Angew. Chem. Int. Edit. 2014, 53, 6866. doi: 10.1002/anie.v53.27
-
[23]
(23) Cui, H. G.; Cheetham, A. G.; Pashuck, E. T.; Stupp, S. I. J. Am. Chem. Soc. 2014, 136, 12461. doi: 10.1021/ja507051w
-
[24]
(24) Xu, H.; Wang, J.; Han, S.; Wang, J.; Yu, D.; Zhang, H.; Xia, D.; Zhao, X.; Waigh, T. A.; Lu, J. R. Langmuir 2009, 25, 4115. doi: 10.1021/la802499n
-
[25]
(25) Han, S.; Cao, S.; Wang, Y.; Wang, J.; Xia, D.; Xu, H.; Zhao, X.; Lu, J. R. Chem. -Eur. J. 2011, 17, 13095. doi: 10.1002/chem.v17.46
-
[26]
(26) Zhao, Y.; Wang, J.; Deng, L.; Zhou, P.; Wang, S.; Wang, Y.; Xu, H.; Lu, J. R. Langmuir 2013, 29, 13457. doi: 10.1021/la402441w
-
[27]
(27) Estroff, L. A.; Hamilton. A. D. Chem. Rev. 2004, 104, 1201. doi: 10.1021/cr0302049
-
[28]
(28) Pashuck, E. T.; Cui, H. G.; Stupp, S. I. J. Am. Chem. Soc. 2010, 132, 6041. doi: 10.1021/ja908560n
-
[29]
(29) Boekhoven, J.; Stupp, S. I. Adv. Mater. 2014, 26, 1642. doi: 10.1002/adma.201304606
-
[30]
(30) Collier, J. H.; Rudra, J. S.; Gasiorowski, J. Z.; Jung, J. P. Chem. Soc. Rev. 2010, 39, 3413. doi: 10.1039/b914337h
-
[31]
(31) Branco, M. C.; Schneider, J. P. Acta Biomater. 2009, 5, 817.
-
[32]
(32) Yang, Z.; Liang G.; Ma, M.; Abbah, A. S.; Lu, W.W.; Xu, B. Chem. Commun. 2007, (8), 843.
-
[33]
(33) Lin, B. F.; Megley, K. A.; Viswanathan, N.; Krogstad, D. V.; Drews, L. B.; Kade, M. J.; Qian, Y.; Tirrell, M. V. J. Mater. Chem. 2012, 22, 19447.
-
[34]
(34) Engler, A. J.; Sen, S.; Sweeney, H. L.; Discher, D. E. Cell 2006, 126, 677. doi: 10.1016/j.cell.2006.06.044
-
[35]
(35) Kraehenbuehl, T. P.; Zammaretti, P.; Van der Vlies, A. J.; Schoenmakers, R. G.; Lutolf, M. P.; Jaconi, M. E.; Hubbell, J. A. Biomaterials 2008, 29, 2757. doi: 10.1016/j.biomaterials.2008.03.016
-
[36]
(36) Jia, D.; Tao, K.; Wang, J.; Wang, C.; Zhao, X.; Yaseen, M.; Xu, H.; Que, G.; Webster, J. R. P.; Lu, J. R. Soft Matter 2011, 7, 1777. doi: 10.1039/C0SM00581A
-
[37]
(37) Rexeisen, E. L.; Fan, W.; Pangburn, T. O.; Taribagil, R. R.; Bates, F. S.; Lodge, T. P.; Tsapatsis, M.; Kokkoli, E. Langmuir 2010, 26, 1953. doi: 10.1021/la902571q
-
[38]
(38) Kokkoli, E.; Ochsenhirt, S. E.; Tirrell, M. Langmuir 2004, 20, 2397. doi: 10.1021/la035597l
-
[39]
(39) Tao, K.; Wang, J.; Zhou, P.; Wang, C.; Xu, H.; Zhao, X.; Lu, J. R. Langmuir 2011, 27, 2723. doi: 10.1021/la1034273
-
[40]
(40) Korevaar, P. A.; Newcomb, C. J.; Meijer, E.W.; Stupp, S. I. J.Am. Chem. Soc. 2014, 136, 8540. doi: 10.1021/ja503882s
-
[41]
(41) Ramachandran, S.; Trewhella, J.; Tseng, Y.; Yu, Y. B. Chem. Mater. 2006, 18, 6157. doi: 10.1021/cm061071l
-
[42]
(42) Qiao, Y.; Lin, Y.; Yang, Z.; Chen, H.; Zhang, S.; Yan, Y.; Huang, J. J. Phys. Chem. B. 2010, 114, 11725.
-
[43]
(43) Tang, C.; Smith, A. M. M.; Collins, R. F.; Ulijn, R. V.; Saiaani, A. Langmmuir 2009, 225, 9447.
-
[1]
-
-
[1]
Qiang Zhou , Pingping Zhu , Wei Shao , Wanqun Hu , Xuan Lei , Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064
-
[2]
Qingyang Cui , Feng Yu , Zirun Wang , Bangkun Jin , Wanqun Hu , Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046
-
[3]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[4]
Ruoxi Sun , Yiqian Xu , Shaoru Rong , Chunmiao Han , Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001
-
[5]
Yuena Yang , Xufang Hu , Yushan Liu , Yaya Kuang , Jian Ling , Qiue Cao , Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125
-
[6]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[7]
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
-
[8]
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
-
[9]
Hongyun Liu , Jiarun Li , Xinyi Li , Zhe Liu , Jiaxuan Li , Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070
-
[10]
Lijuan Liu , Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060
-
[11]
Linhan Tian , Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056
-
[12]
Xiyuan Su , Zhenlin Hu , Ye Fan , Xianyuan Liu , Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059
-
[13]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[14]
Cunming Yu , Dongliang Tian , Jing Chen , Qinglin Yang , Kesong Liu , Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008
-
[15]
Xinyu ZENG , Guhua TANG , Jianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374
-
[16]
Shuang Meng , Haixin Long , Zhou Zhou , Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008
-
[17]
Jinghua Wang , Yanxin Yu , Yanbiao Ren , Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057
-
[18]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[19]
Dong-Bing Cheng , Junxin Duan , Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053
-
[20]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[1]
Metrics
- PDF Downloads(305)
- Abstract views(619)
- HTML views(14)