Citation:
JIAO Jin-Zhen, LI Shi-Hui, HUANG Bi-Chun. Preparation of Manganese Oxides Supported on Graphene Catalysts and Their Activity in Low-Temperature NH3-SCR[J]. Acta Physico-Chimica Sinica,
;2015, 31(7): 1383-1390.
doi:
10.3866/PKU.WHXB201504292
-
Graphene oxide ( ) was synthesized using an improved Hummers method. Subsequently, catalysts of manganese oxides (at varying loadings) supported on graphene (MnOx/GR) were prepared by hydrothermal reaction for application in the selective catalytic reduction (SCR) of NOx with NH3 at low temperatures. The structural properties and catalytic performance were evaluated by Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, X-ray powder diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption, X-ray photoelectron spectroscopy (XPS), and H2 temperature-programmed reduction (H2-TPR). The characterization results indicated that abundant functional groups existed on the surface of the prepared that could combine with manganese during preparation of the catalysts. Manganese oxide entities, with different crystallinities (MnO, Mn3O4, or MnO2), were dispersed on the surface of graphene. The results of the catalytic studies showed that the MnOx/GR catalysts prepared with different MnOx loadings all exhibited excellent low-temperature SCR activities. The catalyst with 20%(w) MnOx displayed the best activity, which was attributed to the high content of high-valent manganese and oxygen adsorbed onto the catalyst surface, as well as to the enhancement in redox abilities and the addition of active sites at low temperatures.
-
-
-
[1]
(1) Qi, G.; Yang, R.T. Appl. Catal. B: Environ. 2003, 44, 217. doi: 10.1016/S0926-3373(03)00100-0
-
[2]
(2) Park, T. S.; Jeong, S. K.; Hong, S. H.; Hong, S. C. Ind. Eng. Chem. Res. 2001, 40, 4491. doi: 10.1021/ie010218+
-
[3]
(3) Huang, B. C.; Huang, R.; Jin, D. J.; Ye, D. Q. Catal. Today 2007, 126, 279. doi: 10.1016/j.cattod.2007.06.002
-
[4]
(4) Thirupathi, B.; Smirniotis, P. G. Appl. Catal. B: Environ. 2011, 110, 195. doi: 10.1016/j.apcatb.2011.09.001
-
[5]
(5) Huang, P.; Pan, S.W.; Huang, B. C.; Cheng, H.; Ye, D. Q.; Wu, J. L.; Fu, M. L.; Lu, S. L. Acta Phys. -Chim. Sin. 2013, 29, 176. [黄萍, 盘思伟, 黄碧纯, 程华, 叶代启, 吴军良, 付名利, 卢圣良. 物理化学学报, 2013, 29, 176.] doi: 10.3866/PKU.WHXB201210094
-
[6]
(6) Ma, Z. X.; Yang, H. S.; Liu, F.; Zhang, X. B. Appl. Catal. A: Gen. 2013, 467, 450. doi: 10.1016/j.apcata.2013.08.020
-
[7]
(7) Tang, X. L.; Hao, J. M.; Yi, H. H.; Li, J. H. Catal. Today 2007, 126, 406. doi: 10.1016/j.cattod.2007.06.013
-
[8]
(8) Masaaki, Y.; Akinori, Y.; Isao, Mochida. Appl. Catal. A 1998, 173, 239. doi: 10.1016/S0926-860X(98)00182-3
-
[9]
(9) Wang, L. S.; Huang, B. C.; Su, Y. X.; Zhou, G. Y.; Wang, K. L.; Luo, H. C.; Ye, D. Q. Chem. Eng. J. 2012, 192, 232. doi: 10.1016/j.cej.2012.04.012
-
[10]
(10) Fang, C.; Zhang, D. S.; Cai, S. X.; Zhang, L.; Huang, L.; Li, H. R.; Maitarad, P.; Shi, L. Y.; Gao, R. H.; Zhang, J. P. Nanoscale 2013, 5, 9199. doi: 10.1039/c3nr02631k
-
[11]
(11) Pourkhalil, M.; Moghaddam, A. Z.; Rashidi, A.; Towfighi, J.; Mortazavi, Y. Appl. Surf. Sci. 2013, 279, 250. doi: 10.1016/j.apsusc.2013.04.076
-
[12]
(12) Li, N.; Geng, Z. F.; Cao, M. H.; Ren, L.; Zhao, X. Y.; Liu, B.; Tian, Y.; Hu, C.W. Carbon 2013, 54, 124. doi: 10.1016/j.carbon.2012.11.009
-
[13]
(13) Bruno, F. M.; Philippe, S. Catal. Sci. Technol. 2012, 2, 54.
-
[14]
(14) Moussa, S. O.; Panchakarla, L. S.; Ho, M. Q.; El-Shall, M. S. ACS Catal. 2014, 4, 535. doi: 10.1021/cs4010198
-
[15]
(15) Gilje, S.; Han, S.; Wang, M. S.; Wang, K. L.; Kaner, R. B. Nano Lett. 2007, 7, 3394. doi: 10.1021/nl0717715
-
[16]
(16) Chen, D. Y.; Chen, W. X.; Ma, L.; Ji, G.; Chang, K.; Lee, J. Y. Mater.Today 2014, 17, 184. doi: 10.1016/j.mattod.2014.04.001
-
[17]
(17) Li, L.; Seng, K. H.; Liu, H. K.; Nevirkovets, I. P.; Guo, Z. P. Electrochim. Acta 2013, 87, 801. doi: 10.1016/j.electacta.2012.08.127
-
[18]
(18) Li, M.; Liu, Q.; Jia, Z. J.; Xu, X. C.; Cheng, Y. F.; Zheng, Y. F.; Xi, T. F.; Wei, S. C. Carbon 2014, 67, 185. doi: 10.1016/j.carbon.2013.09.080
-
[19]
(19) Lu, X.; Song, C.; Chang, C.; Teng, Y.; Tong, Z.; Tang, X. Ind. Eng. Chem. Res. 2014, 53, 11601. doi: 10.1021/ie5016969
-
[20]
(20) Romero, H. E.; Joshi, P.; Gupta, A. K.; Gutierrez, H. R.; Cole, M.W.; Tadigadapa, S. A.; Ekluud, P. C. Nanotechnology 2009, 20, 245501. doi: 10.1088/0957-4484/20/24/245501
-
[21]
(21) Chen, S.; Zhu, J.W.; Wu, X. D.; Han, Q. F.; Wang, X. ACS Nano 2010, 4, 2822. doi: 10.1021/nn901311t
-
[22]
(22) Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. ACS Nano 2010, 4, 4806. doi: 10.1021/nn1006368
-
[23]
(23) Tang, X. L.; Hao, J. M.; Yi, H. H.; Ning, P. J. Rare Earths 2007, 25, 240. doi: 10.1016/S1002-0721(07)60479-7
-
[24]
(24) Jeong, H.; Lee, Y. P.; Jin, M. H.; Kim, E. S.; Bae, J. J.; Lee, Y. H. Chem. Phys. Lett. 2009, 470, 255. doi: 10.1016/j.cplett.2009.01.050
-
[25]
(25) Gu, Z.; Li, C.; Wang, G.; Zhang, L.; Li, X.; Wang, W.; Jin, S. J. Polym. Sci. Part B: Polym. Phys. 2010, 48, 1329. doi: 10.1002/polb.v48:12
-
[26]
(26) Kai, K.; Yoshida, Y.; Kobayashi, Y.; Kageyama, H.; Saito, G. Dalton Trans. 2011, 41, 825.
-
[27]
(27) Buciuman, F.; Patcas, F.; Craciun, R.; Zahn, D. R. T. Phys. Chem. Chem. Phys. 1999, 1, 185. doi: 10.1039/a807821a
-
[28]
(28) Ferrari, A. C.; Basko, D. M. Nat. Nanotechnology 2013, 8, 235. doi: 10.1038/nnano.2013.46
-
[29]
(29) Li, B.; Zhou, L.; Wu, D.; Peng, H. L.; Yan, K.; Zhou, Y.; Liu, Z. F. ACS Nano 2011, 5, 5957. doi: 10.1021/nn201731t
-
[30]
(30) Voggu, R.; Das, B.; Rout, C. S.; Rao, C. N. R. J. Phys.: Condens. Matter 2008, 20, 472204. doi: 10.1088/0953-8984/20/47/472204
-
[31]
(31) Lee, J.; Novoselov, K. S.; Shin, H. S. ACS Nano 2011, 5, 608. doi: 10.1021/nn103004c
-
[32]
(32) Jiang, L.; Yao, M.; Liu, B.; Li, Q.; Liu, R.; Lv, H.; Lu, S.; ng, C.; Zou, B.; Cui, T.; Liu, B. B. Crystengcomm 2013, 15, 3739. doi: 10.1039/c3ce27109a
-
[33]
(33) Han, Y. F.; Chen, F. X.; Zhong, Z. Y.; Ramesh, K.; Widjaja, E.; Chen, L.W. Catal. Commun. 2006, 7, 739. doi: 10.1016/j.catcom.2006.08.006
-
[34]
(34) Huang, H. C.; Ye, D. Q.; Huang, B. C.; Wei, Z. L. Catal. Today 2008, 139, 100. doi: 10.1016/j.cattod.2008.08.028
-
[35]
(35) Lu, P.; Li, C. T.; Zeng, G. M.; He, L. J.; Peng, D. L.; Cui, H. F.; Li, S. H.; Zhai, Y. B. Appl. Catal. B 2010, 96, 157. doi: 10.1016/j.apcatb.2010.02.014
-
[36]
(36) Zhang, J. T.; Xiong, Z. G.; Zhao, X. S. J. Mater. Chem. 2011, 21, 3634. doi: 10.1039/c0jm03827j
-
[37]
(37) Park, E.; Kim, M.; Jung, H.; Chin, S.; Jurng, J. ACS Catal. 2013, 3, 1518. doi: 10.1021/cs3007846
-
[38]
(38) Ponce, S.; Peña, M. A.; Fierro, J. L. G. Appl. Catal. B: Environ. 2000, 24, 193. doi: 10.1016/S0926-3373(99)00111-3
-
[39]
(39) Kang, M.; Park, E. D.; Kim, J. M.; Yie, J. E. Appl. Catal. A: Gen. 2007, 327, 261. doi: 10.1016/j.apcata.2007.05.024
-
[40]
(40) Yang, C.; Liu, X. Q.; Huang, B. C.; Wu, Y. M. Acta Phys. -Chim. Sin. 2014, 30, 1805. [杨超, 刘小青, 黄碧纯, 吴友明. 物理化学学报, 2014, 30, 1805.] doi: 10.3866/PKU.WHXB201407162
-
[1]
-
-
-
[1]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[2]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[3]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[4]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[5]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[6]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[7]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[8]
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023
-
[9]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[10]
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037
-
[11]
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
-
[12]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[13]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[14]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[15]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[16]
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
-
[17]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[18]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[19]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[20]
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024
-
[1]
Metrics
- PDF Downloads(364)
- Abstract views(461)
- HTML views(2)