Citation: DING Wan-Jian, FANG Wei-Hai, CHAI Zhi-Fang, WANG Dong-Qi. Performance of Twelve Density Functional Theory Methods in the Characterization of Three Trivalent Uranium Complexes[J]. Acta Physico-Chimica Sinica, ;2015, 31(7): 1283-1301. doi: 10.3866/PKU.WHXB201504291 shu

Performance of Twelve Density Functional Theory Methods in the Characterization of Three Trivalent Uranium Complexes

  • Received Date: 7 January 2015
    Available Online: 29 April 2015

    Fund Project: 国家自然科学基金(21073013, 91026000, 91226105) (21073013, 91026000, 91226105)(Y2291810S3)资助项目 (Y2291810S3)

  • We report a comparative study on the characterization of three trivalent uranium complexes using 12 density functional theory (DFT) methods, i.e., BP86, PBE, B3LYP, B3PW91, BHandHLYP, PBE0, X3LYP, CAM-B3LYP, TPSS, M06L, M06, and M06-2X, representing (meta-)GGA and hybrid (meta-)GGA levels of treatment of molecular systems. The MP2 method was used in single-point calculations to provide an ab initio view of the electronic structure. Three model systems in the experimental work on the activation of CO2 and CS2 by a trivalent uranium complex (Tp*)2U-η1-CH2Ph (Cpd2) were used i.e., (Tp*)2U-η1-CH2Ph (Cpd2), (Tp*)2U-κ2- O2CCH2Ph (Cpd3), and (Tp*)2U-κ2-S2CCH2Ph (Cpd4) (Tp=hydrotris(3, 5-dimethylpyrazolyl)borate). The hybrid functionals, B3LYP and B3PW91, displayed od performance in view of both the geometrical and electronic structures. The MP2 method generated consistent results as DFT methods for Cpd2 and Cpd3, while provided an odd picture of the electronic structure of Cpd4 that may be due to its single determinant feature, leading to its capture of an electronic configuration of Cpd4 different from the one with the DFT methods. The use of a quasi-relativistic 5f-in-core ECP (LPP) treatment for U(III) in the thermodynamic calculations was supported by the calculations with a small-core ECP treatment (SPP) for U. Owing to increasing interests in low-valent actinide molecular systems, this work complements previous comparative studies, which mainly focus on highvalent actinide complexes, and provides timely information on the performance of 12 widely used DFT methods in studying low-valent actinide systems. It is expected to contribute to a more sensible selection of DFT methods in the study of low-valent actinide molecular systems.

  • 加载中
    1. [1]

      (1) Morss, L. R.; Edelstein, N. M.; Fuger, J.; Katz, J. J. The Chemistry of the Actinide and Transactinide Elements, 3rd ed.; Springer: Dordrecht, The Netherlands, 2008.

    2. [2]

      (2) Streitwieser, A., Jr.; Mueller-Westerhoff, U. J. Am. Chem. Soc. 1968, 90, 7364.

    3. [3]

      (3) Chang, A. H. H.; Pitzer, R. M. J. Am. Chem. Soc. 1989, 111, 2500. doi: 10.1021/ja00189a022

    4. [4]

      (4) Li, J.; Bursten, B. E. J. Am. Chem. Soc. 1998, 120, 11456. doi: 10.1021/ja9821145

    5. [5]

      (5) Seyferth, D. Organometallics 2004, 23, 3562. doi: 10.1021/om0400705

    6. [6]

      (6) Gagliardi, L.; Roos, B. O. Nature 2005, 433, 848. doi: 10.1038/nature03249

    7. [7]

      (7) Roos, B. O.; Malmqvist, P.; Gagliardi, L. J. Am. Chem. Soc. 2006, 128, 17000. doi: 10.1021/ja066615z

    8. [8]

      (8) Gagliardia, L.; Roos, B. O. Chem. Soc. Rev. 2007, 36, 893. doi: 10.1039/b601115m

    9. [9]

      (9) Wu, X.; Lu, X. J. Am. Chem. Soc. 2007, 129, 2171. doi: 10.1021/ja067281g

    10. [10]

      (10) Infante, I.; Gagliardi, L.; Scuseria, G. E. J. Am. Chem. Soc. 2008, 130, 7459. doi: 10.1021/ja800847j

    11. [11]

      (11) Hu, H. S.; Qiu, Y. H.; Xiong, X. G.; Schwarz, W. H. E.; Li, J. Chem. Sci. 2012, 3, 2786. doi: 10.1039/c2sc20329d

    12. [12]

      (12) Haschke, J. M.; Stakebake, J. L. The Chemistry of the Actinide and Transactinide Elements, Vol. 5; Morss, L. R., Edelstein, N. M., Fuger, N. M., Katz, J. J. Eds.; Springer: Dordrecht, 2008; pp 3199-3272.

    13. [13]

      (13) Choppin, G. R.; Jensen, M. P. The Chemistry of the Actinide and Transactinide Elements, Vol. 4; Morss, L. R., Edelstein, N. M., Fuger, N. M., Katz, J. J. Eds.; Springer: Dordrecht, 2008; pp 2524-2621.

    14. [14]

      (14) Choppin, G. R. J. Radioanal. Nucl. Chem. 2007, 273, 695. doi: 10.1007/s10967-007-0933-3

    15. [15]

      (15) Colmenares, C. A. Prog. Solid State Chem. 1984, 15, 257. doi: 10.1016/0079-6786(84)90003-7

    16. [16]

      (16) Barnea, E.; Eisen, M. S. Coord. Chem. Rev. 2006, 250, 855. doi: 10.1016/j.ccr.2005.12.007

    17. [17]

      (17) de Almeida, K. J.; Cesar, A. Organometallics 2006, 25, 3407. doi: 10.1021/om060112k

    18. [18]

      (18) Stubbert, B. D.; Marks, T. J. J. Am. Chem. Soc. 2007, 129, 4253. doi: 10.1021/ja0665444

    19. [19]

      (19) Field, R.W. Ber. Bunsen-Ges. Phys. Chem. 1982, 86, 771. doi: 10.1002/bbpc.19820860903

    20. [20]

      (20) Demtroder, W. Laser Spectroscopy: Basic Concepts and Instrumentation, 3rd ed.; Springer-Verlag: Berlin, Heidelberg, New York, 2003.

    21. [21]

      (21) Schlag, E.W. ZEKE Spectroscopy; Cambridge University Press: Cambridge, UK, 1998.

    22. [22]

      (22) Softley, T. P. Int. Rev. Phys. Chem. 2004, 23, 1. doi: 10.1080/01442350310001652940

    23. [23]

      (23) Heaven, M. C. Phys. Chem. Chem. Phys. 2006, 8, 4497. doi: 10.1039/b607486c

    24. [24]

      (24) Schreckenbach, G.; Hay, P. J.; Martin, R. L. J. Comput. Chem. 1999, 20, 70.

    25. [25]

      (25) Kaltsoyannis, N. Chem. Soc. Rev. 2003, 32, 9. doi: 10.1039/b204253n

    26. [26]

      (26) Kaltsoyannis, N.; Hay, P. J.; Li, J.; Blaudeau, J. P.; Bursten, B. E. The Chemistry of The Actinide and Transactinide Elements, Vol. 3; Morss, L. R., Edelstein, N. M., Fuger, N. M., Katz, J. J. Eds.; Springer: Dordrecht, The Netherlands, 2008; pp 1893- 2012.

    27. [27]

      (27) Schreckenbach, G.; Shamov, G. A. Accoutns Chem. Res. 2010, 43, 19. doi: 10.1021/ar800271r

    28. [28]

      (28) Buehl, M.; Wipff, G. ChemPhysChem 2011, 12, 3095. doi: 10.1002/cphc.201100458

    29. [29]

      (29) Lan, J. H.; Shi, W. Q.; Yuan, L. Y.; Li, J.; Zhao, Y. L.; Chai, Z. F. Coord. Chem. Rev. 2012, 256, 1406. doi: 10.1016/j.ccr.2012.04.002

    30. [30]

      (30) D'Angelo, P.; Spezia, R. Chem. -Eur. J. 2012, 18, 11162. doi: 10.1002/chem.v18.36

    31. [31]

      (31) Wang, D.; van Gunsteren, W. F.; Chai, Z. Chem. Soc. Rev. 2012, 41, 5836. doi: 10.1039/c2cs15354h

    32. [32]

      (32) Cramer, C. J.; Truhlar, D. G. Phys. Chem. Chem. Phys. 2009, 11, 10757. doi: 10.1039/b907148b

    33. [33]

      (33) Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, 1989.

    34. [34]

      (34) Dreizler, R. M.; Gross, E. K. U. Density Functional Theory: An Approach to the Quantum Many-Body Problem; Springer-Verlag: Berlin, Heidelberg, 1990.

    35. [35]

      (35) Chai, J. D.; Head- rdon, M. J. Chem. Phys. 2008, 128, 084106. doi: 10.1063/1.2834918

    36. [36]

      (36) Yanagisawa, S.; Tsuneda, T.; Hirao, K. J. Chem. Phys. 2000, 112, 545. doi: 10.1063/1.480546

    37. [37]

      (37) Barden, C. J.; Rienstra-Kiracofe, J. C.; Schaefer, H. F., III. J. Chem. Phys. 2000, 113, 690. doi: 10.1063/1.481916

    38. [38]

      (38) Gutsev, G. L.; Bauschlicher, C.W., Jr. J. Phys. Chem. A 2003, 107, 4755. doi: 10.1021/jp030146v

    39. [39]

      (39) Schultz, N. E.; Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2005, 109, 11127. doi: 10.1021/jp0539223

    40. [40]

      (40) Yang, K.; Zheng, J.; Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2010, 132, 164117. doi: 10.1063/1.3382342

    41. [41]

      (41) Averkiev, B. B.; Mantina, M.; Valero, R.; Infante, I.; Kovacs, A.; Truhlar, D. G.; Gagliardi, L. Theor. Chem. Acc. 2011, 129, 657. doi: 10.1007/s00214-011-0913-0

    42. [42]

      (42) erigk, L.; Grimme, S. Phys. Chem. Chem. Phys. 2011, 13, 6670. doi: 10.1039/c0cp02984j

    43. [43]

      (43) Tecmer, P.; mes, A. S. P.; Ekstroem, U.; Visscher, L. Phys. Chem. Chem. Phys. 2011, 13, 6249. doi: 10.1039/c0cp02534h

    44. [44]

      (44) Antunes, M. A.; Ferrence, G. M.; Domin s, A.; McDonald, R.; Burns, C. J.; Takats, J.; Marques, N. Inorg. Chem. 2004, 43, 6640. doi: 10.1021/ic049204x

    45. [45]

      (45) Antunes, M. A.; Domin s, .; dos Santos, I. C.; Marques, N.; Takats, J. Polyhedron 2005, 24, 3038. doi: 10.1016/j.poly.2005.06.025

    46. [46]

      (46) Korobkov, I.; relsky, S.; Gambarotta, S. J. Am. Chem. Soc. 2009, 131, 10406. doi: 10.1021/ja9002525

    47. [47]

      (47) Duhovi?, S.; Khan, S.; Diaconescu, P. L. Chem. Commun. 2010, 46, 3390. doi: 10.1039/b927264j

    48. [48]

      (48) Matson, E. M.; Forrest, W. P.; Fanwick, P. E.; Bart, S. C. J. Am. Chem. Soc. 2011, 133, 4948. doi: 10.1021/ja110158s

    49. [49]

      (49) Fox, A. R.; Bart, S. C.; Meyer, K.; Cummins, C. C. Nature 2008, 455, 341. doi: 10.1038/nature07372

    50. [50]

      (50) Arnold, P. L. Chem. Commun. 2011, 47, 9005. doi: 10.1039/c1cc10834d

    51. [51]

      (51) Castro-Rodriguez, I.; Meyer, K. J. Am. Chem. Soc. 2005, 127, 11242. doi: 10.1021/ja053497r

    52. [52]

      (52) Lam, O. P.; Bart, S. C.; Kameo, H.; Heinemann, F.W.; Meyer, K. Chem. Commun. 2010, 46, 3137. doi: 10.1039/b927142b

    53. [53]

      (53) Castro, L.; Lam, O. P.; Bart, S. C.; Meyer, K.; Maron, L. Organometallics 2010, 29, 5504. doi: 10.1021/om100479r

    54. [54]

      (54) Moloy, K. G.; Marks, T. J. Inorg. Chim. Acta 1985, 110, 127. doi: 10.1016/S0020-1693(00)84568-5

    55. [55]

      (55) Domin s, A.; Marcalo, J.; Marques, N.; de Matos, A. P. Polyhedron 1992, 11, 501. doi: 10.1016/S0277-5387(00)83295-7

    56. [56]

      (56) Evans, W. J.; Walensky, J. R.; Ziller, J.W. Organometallics 2010, 29, 945. doi: 10.1021/om901006t

    57. [57]

      (57) Evans, W. J.; Walensky, J. R.; Ziller, J.W. Inorg. Chem. 2010, 49, 1743. doi: 10.1021/ic902141f

    58. [58]

      (58) Evans, W. J.; Siladke, N. A.; Ziller, J.W. C. R. Chimie 2010, 13, 775. doi: 10.1016/j.crci.2010.02.003

    59. [59]

      (59) Bart, S. C.; Anthon, C.; Heinemann, F.W.; Bill, E.; Edelstein, N. M.; Meyer, K. J. Am. Chem. Soc. 2008, 130, 12536. doi: 10.1021/ja804263w

    60. [60]

      (60) Mansell, S. M.; Kaltsoyannis, N.; Arnold, P. L. J. Am. Chem. Soc. 2011, 133, 9036. doi: 10.1021/ja2019492

    61. [61]

      (61) Lescop, C.; Arliguie, T.; Lance, M.; Nierlich, M.; Ephritikhine, M. J. Organomet. Chem. 1999, 580, 137. doi: 10.1016/S0022-328X(98)01139-5

    62. [62]

      (62) Lam, O. P.; Meyer, K. Polyhedron 2012, 32, 1. doi: 10.1016/j.poly.2011.07.015

    63. [63]

      (63) Matson, E. M.; Fanwick, P. E.; Bart, S. C. Organometallics 2011, 30, 5753. doi: 10.1021/om200612h

    64. [64]

      (64) Ding, W.; Fang, W.; Chai, Z.; Wang, D. J. Chem. Theory Comput. 2012, 8, 3605. doi: 10.1021/ct300075n

    65. [65]

      (65) Becke, A. D. Phys. Rev. A 1988, 38, 3098. doi: 10.1103/PhysRevA.38.3098

    66. [66]

      (66) Perdew, J. P. Phys. Rev. B 1986, 33, 8822. doi: 10.1103/PhysRevB.33.8822

    67. [67]

      (67) Perdew, J. P. Phys. Rev. B 1986, 34, 7406.

    68. [68]

      (68) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865

    69. [69]

      (69) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1997, 78, 1396.

    70. [70]

      (70) Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158. doi: 10.1063/1.478522

    71. [71]

      (71) Becke, A. D. J. Chem. Phys. 1993, 98, 1372. doi: 10.1063/1.464304

    72. [72]

      (72) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785

    73. [73]

      (73) Perdew, J. P. Electronic Structure of Solids '91; Ziesche, P., Eschrig, H. Eds.; Akademie Verlag, Berlin, 1991; pp 11-20.

    74. [74]

      (74) Xu, X.; ddard, W. A., III. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 2673. doi: 10.1073/pnas.0308730100

    75. [75]

      (75) Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51. doi: 10.1016/j.cplett.2004.06.011

    76. [76]

      (76) Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Phys. Rev. Lett. 2003, 91, 146401. doi: 10.1103/PhysRevLett.91.146401

    77. [77]

      (77) Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125, 194101. doi: 10.1063/1.2370993

    78. [78]

      (78) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. doi: 10.1007/s00214-007-0310-x

    79. [79]

      (79) Keim, W. Pure & Appl. Chem. 1986, 58, 825.

    80. [80]

      (80) Scuseria, G. E.; Staroverov, V. N. Theory and Application of Computational Chemistry: the First 40 Years; Dykstra, C. E., Frenking, G., Kim, K. S., Scuseria, G. E. Eds.; Elsevier: Amsterdam, 2005; pp 669-724.

    81. [81]

      (81) Paier, J.; Marsman, M.; Kresse, G. J. Chem. Phys. 2007, 127, 024103. doi: 10.1063/1.2747249

    82. [82]

      (82) Ahlrichs, R.; Furche, F.; Grimme, S. Chem. Phys. Lett. 2000, 325, 317. doi: 10.1016/S0009-2614(00)00654-0

    83. [83]

      (83) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200. doi: 10.1139/p80-159

    84. [84]

      (84) te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Guerra, C. F.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. J. Comput. Chem. 2001, 22, 931.

    85. [85]

      (85) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision C.01; Gaussian Inc.:Wallingford, CT, 2009.

    86. [86]

      (86) TURBOMOLE V6.5 2013, a Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007. TURBOMOLE GmbH since 2007; available from http://www.turbomole.com.

    87. [87]

      (87) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200. doi: 10.1016/0009-2614(89)87234-3

    88. [88]

      (88) de Jong, W. A.; Harrison, R. J.; Nichols, J. A.; Dixon, D. A. Theor. Chem. Acc. 2001, 107, 22. doi: 10.1007/s002140100293

    89. [89]

      (89) Shamov, G. A.; Schreckenbach, G. J. Phys. Chem. A 2005, 109, 10961. Erratum. J. Phys. Chem. A 2006, 110, 12072. doi: 10.1021/jp053522f

    90. [90]

      (90) Shamov, G. A.; Schreckenbach, G.; Vo, T. N. Chem. -Eur. J. 2007, 13, 4932.

    91. [91]

      (91) Odoh, S. O.; Schreckenbach, G. J. Phys. Chem. A 2010, 114, 1957. doi: 10.1021/jp909576w

    92. [92]

      (92) Odoh, S. O.; Schreckenbach, G. J. Phys. Chem. A 2011, 115, 14110. doi: 10.1021/jp207556b

    93. [93]

      (93) Odoh, S. O.; Walker, S. M.; Meier, M.; Stetefeld, J.; Schreckenbach, G. Inorg. Chem. 2011, 50, 3141. doi: 10.1021/ic2001706

    94. [94]

      (94) Lai, W.; Yao, J.; Shaik, S.; Chen, H. J. Chem. Theory Comput. 2012, 8, 2991. doi: 10.1021/ct3005936

    95. [95]

      (95) Jakobsen, S.; Kristensen, K.; Jensen, F. J. Chem. Theory Comput. 2013, 9, 3978. doi: 10.1021/ct400452f

    96. [96]

      (96) Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2006, 110, 5121. doi: 10.1021/jp060231d

    97. [97]

      (97) Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2006, 110, 13126. doi: 10.1021/jp066479k

    98. [98]

      (98) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104. doi: 10.1063/1.3382344

    99. [99]

      (99) Vanquickenborne, L. G.; Verhulst, J.; Coussens, B.; Hendrickx, M.; Pierloot, K. J. Mol. Struct. -Theochem 1987, 153, 227. doi: 10.1016/0166-1280(87)80006-4

    100. [100]

      (100) Banik, N. L.; Schimmelpfennig, B.; Marquardt, C. M.; Brendebach, B.; Geist, A.; Denecke, M. A. Dalton Trans. 2010, 39, 5117. doi: 10.1039/b927016g

    101. [101]

      (101) Iché-Tarrat, N.; Marsden, C. J. J. Phys. Chem. A 2008, 112, 7632. doi: 10.1021/jp801124u

    102. [102]

      (102) Migdalek, J.; Baylis, W. E. Can. J. Phys. 1982, 60, 1317. doi: 10.1139/p82-178

    103. [103]

      (103) Müller, W.; Flesch, J.; Meyer, W. J. Chem. Phys. 1984, 80, 3297. doi: 10.1063/1.447083

    104. [104]

      (104) Foucrault, M.; Millie, P.; Daudey, J. P. J. Chem. Phys. 1992, 96, 1257.

    105. [105]

      (105) Moritz, A.; Cao, X.; Dolg, M. Theor. Chem. Acc. 2007, 117, 473. doi: 10.1007/s00214-006-0180-7

    106. [106]

      (106) Küchle, W.; Dolg, M.; Stoll, H.; Preuss, H. J. Chem. Phys. 1994, 100, 7535. doi: 10.1063/1.466847

    107. [107]

      (107) Cao, X.; Dolg, M.; Stoll, H. J. Chem. Phys. 2003, 118, 487. doi: 10.1063/1.1521431

    108. [108]

      (108) Cao, X.; Dolg, M. J. Molec. Struct. -Theochem 2004, 673, 203. doi: 10.1016/j.theochem.2003.12.015

    109. [109]

      (109) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257. doi: 10.1063/1.1677527

    110. [110]

      (110) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; rdon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654. doi: 10.1063/1.444267

    111. [111]

      (111) Schäfer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97, 2571. doi: 10.1063/1.463096

    112. [112]

      (112) Dolg, M.; Cao, X. J. Phys. Chem. A 2009, 113, 12573. doi: 10.1021/jp9044594

    113. [113]

      (113) Mayer, I. Int. J. Quantum Chem. 1984, 26, 151.

    114. [114]

      (114) Pauling, L. Nature of the Chemistry Bond; Cornell University Press: Ithaca, United States, 1960; pp 88-107.

    115. [115]

      (115) Lide, D. R. CRC Handbook of Chemistry and Physics, Internet Version. http://www.hbcpnetbase.com; CRC Press: Boca Raton, FL, 2005.

    116. [116]

      (116) Matta, C. F.; Boyd, R. J. The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design; WILEY-VCH:Weinham, 2007.


  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    4. [4]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    5. [5]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    6. [6]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    7. [7]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    8. [8]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    9. [9]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    10. [10]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    11. [11]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    12. [12]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    13. [13]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    14. [14]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    15. [15]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    16. [16]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    17. [17]

      Ping Cai Yaxian Zhu Tao Hu . Frontier Research and Basic Theory in the Classroom: an Introduction to the Inorganic Chemistry Teaching Case under the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 84-88. doi: 10.12461/PKU.DXHX202408027

    18. [18]

      Hongyi Zhang Zhihong Shi Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030

    19. [19]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    20. [20]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

Metrics
  • PDF Downloads(431)
  • Abstract views(715)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return