Citation: WANG Hao, SONG Ling-Jun, LI Xing-Hu, YUE Li-Meng. Hydrogen Production from Partial Oxidation of Methane by Dielectric Barrier Discharge Plasma Reforming[J]. Acta Physico-Chimica Sinica, ;2015, 31(7): 1406-1412. doi: 10.3866/PKU.WHXB201504272 shu

Hydrogen Production from Partial Oxidation of Methane by Dielectric Barrier Discharge Plasma Reforming

  • Received Date: 23 January 2015
    Available Online: 27 April 2015

    Fund Project: 国家自然科学基金(21106002) (21106002)中央高校基本科研业务费专项资金(2011113073)资助项目 (2011113073)

  • This paper presents an in-house-designed dielectric barrier discharge (DBD) plasma reformer for hydrogen production via partial oxidation reforming of methane. We examined the effects of oxygen/carbon (O/C) molar ratio, feed flow rate, discharge gap, discharge zone length, filler diameter, filler shape, filler materials, discharge voltage, and discharge frequency on the hydrogen production performance i.e., CH4 conversion rate, H2 yield, and selectivity of products (H2, CO, and CO2). The experimental results showed that the parameters of the discharge zone played an important role in the CH4 conversion rate. For instance, CH4 conversion rate increased with increasing discharge zone lengths. When the discharge zone length increased from 5 to 20 cm, CH4 conversion rate increased from 6.87% to 22.26%, which corresponds to an improvement of 224%. Also, the fillers in the discharge zone strongly influenced the hydrogen production performance. Using reactors with fillers generated higher CH4 conversion rates. Moreover, using fillers with more appropriate dielectric constants is advantageous for practical application. The H2 yield and hydrogen selectivity increased with increasing discharge frequency. Specifically, when the discharge frequency increased from 1.5 to 7.0 kHz, H2 yield increased from 1.10% to 9.49%, and hydrogen selectivity increased from 21.18% to 30.06%. It is believed that the current results would serve as a od guideline in hydrogen production from hydrocarbon fuels by plasma reforming.

  • 加载中
    1. [1]

      (1) http://www.chinairn.com/news/20140211/085433111.html

    2. [2]

      (2) Li, X. H. Conspectus of Electric Vehicle; Beijing Institute of Technology Press: Beijing, 2005; pp 1-5. [李兴虎. 电动汽车概论. 北京: 北京理工大学出版社, 2005: 1-5.]

    3. [3]

      (3) Horng, R. F.; Wen, C. S.; Liauh, C. T.; Chao, Y.; Huang, C. T. Int. J. Hydrog. Energy 2008, 33 (24), 7619. doi: 10.1016/j.ijhydene.2008.09.078

    4. [4]

      (4) Bisaria, V.; Smith, R. J. B. Energy Convers. Manage 2013, No.76, 746.

    5. [5]

      (5) Bowers, B. J.; Zhao, J. L.; Ruffo, M.; Khan, R.; Dattatraya, D.; Dushman, N.; Beziat, J. C.; Boudjemaa, F. Int. J. Hydrog. Energy 2007, 32 (10-11), 1437. doi: 10.1016/j.ijhydene.2006.10.045

    6. [6]

      (6) Noor, T.; Gil, M. V.; Chen, D. Appl. Catal. B-Environ. 2014, No. 150-151, 585.

    7. [7]

      (7) Li, J.; Zhang, Q. J.; Long, X.; Qi, P.; Liu, Z. T.; Liu, Z.W. Chem. Eng. J. 2012, No. 187, 299.

    8. [8]

      (8) Chen, M. N.; Zhang, D. Y.; Thompson, L. T.; Ma, Z. F. Acta Phys. -Chim. Sin. 2011, 27 (9), 2185. [陈孟楠, 章冬云, Thompson, L. T., 马紫峰. 物理化学学报, 2011, 27 (9), 2185.] doi: 10.3866/PKU.WHXB20110824

    9. [9]

      (9) Yang, Z. B.; Zhang, Y.W.; Zhang, Y. Y.; Ding, W. Z.; Shen, P. J.; Liu, Y.; Zhou, Y. D.; Huang, S. Q. Acta Phys. -Chim. Sin. 2010, 26 (2), 350. [杨志彬, 张玉文, 张云妍, 丁伟中, 沈培俊, 刘勇, 周宇鼎, 黄少卿. 物理化学学报, 2010, 26 (2), 350.] doi: 10.3866/PKU.WHXB20100212

    10. [10]

      (10) Du, C. M.; Mo, J. M.; Tang, J.; Huang, D.W.; Mo, Z. X.; Wang, Q. K.; Ma, S. Z.; Chen, Z. J. Appl. Energy 2014, 133 (15), 70.

    11. [11]

      (11) Bundaleska, N.; Tsyganov, D.; Saavedra, R.; Tatarova, E.; Dias, F. M.; Ferreira, C.M. Int. J. Hydrog. Energy 2013, 38 (22), 9145. doi: 10.1016/j.ijhydene.2013.05.016

    12. [12]

      (12) Chaubey, R.; Sahu, S.; James, O. O.; Maity, S. Renew. Sust. Energ. Rev. 2013, No. 23, 443.

    13. [13]

      (13) Bromberg, L.; Cohn, D. R.; Hadidi, K.; Heywood, J. B.; Rabinovich, A. Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications. Diesel Engine Emission Reduction (DEER)Workshop, Coronado, CA, Aug 29-Sept 2, 2004.

    14. [14]

      (14) Zou, J. J.; Zhang, Y. P.; Liu, C. J. Int. J. Hydrog. Energy 2007, 32 (8), 958. doi: 10.1016/j.ijhydene.2006.09.023

    15. [15]

      (15) Song, L. J.; Li, X. H.; Zheng, T. L. Int. J. Hydrog. Energy 2008, 33 (19), 5060. doi: 10.1016/j.ijhydene.2008.07.090

    16. [16]

      (16) Rueangjitt, N.; Sreethawong, T.; Chavadej, S.; Sekiguchi, H. Chem. Eng. J. 2009, 155 (3), 874. doi: 10.1016/j.cej.2009.10.009

    17. [17]

      (17) Tao, J. L.; Xiong, Y. Q. Acta Phys. -Chim. Sin. 2013, 29 (1), 205. [陶晶亮, 熊源泉. 物理化学学报, 2013, 29 (1), 205.] doi: 10.3866/PKU.WHXB201210264

    18. [18]

      (18) Deng, W. Y.; Su, Y. X.; Liu, S. G.; Shen, H. G. Int. J. Hydrog. Energy 2014, 39 (17), 9169. doi: 10.1016/j.ijhydene.2014.04.033

    19. [19]

      (19) Xu, C.; Tu, X. J. Energy Chem. 2013, 22 (3), 420. doi: 10.1016/S2095-4956(13)60055-8

    20. [20]

      (20) Hooshmand, N.; Rahimpour, M. R.; Jahanmiri, A.; Taghvaei, H.; Mohamadzadeh, S. M. Ind. Eng. Chem. Res. 2013, 52 (12), 4443. doi: 10.1021/ie3022779

    21. [21]

      (21) Tu, X.; Whitehead, J. C. Appl. Catal. B-Environ. 2012, No. 125, 439.

    22. [22]

      (22) Reddy, E. L.; Biju, V. M.; Subrahmanyam, C. Int. J. Hydrog. Energy 2012, 37 (3), 2204. doi: 10.1016/j.ijhydene.2011.10.118

    23. [23]

      (23) Lee, D. H.; Kim, K. T.; Cha, M. S.; Song, Y. H. Int. J. Hydrog. Energy 2010, 35 (20), 10967. doi: 10.1016/j.ijhydene.2010.07.029

    24. [24]

      (24) York, A. P. E.; Xiao, T. C.; Green, M. L. H. Top. Catal. 2003, 22 (3-4), 345.

    25. [25]

      (25) Liu, C. M. Common Thermal Parameters Manual; China Metrology Publishing House: Beijing, 1989; p 537. [刘常满. 常用热工参数手册. 北京: 中国计量出版社, 1989: 537.]


  • 加载中
    1. [1]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    2. [2]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    3. [3]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    4. [4]

      Yutong Liu Xuemin Jing . Research Progress on the Catalytic Conversion of Methane in the Context of the “Dual Carbon” Goals. University Chemistry, 2025, 40(10): 101-113. doi: 10.12461/PKU.DXHX202412018

    5. [5]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    6. [6]

      Xinyi Fan Wancai Shi Zhenyu Sun . 甲烷——温室效应中的“隐形杀手”与绿色转机. University Chemistry, 2025, 40(11): 1-10. doi: 10.12461/PKU.DXHX202412060

    7. [7]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    8. [8]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    9. [9]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    10. [10]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    11. [11]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    12. [12]

      Xinnan XIEBoyu ZHANGJianxun YANGYi ZHONGYounis OsamaJianxiao YANGXinchun YANG . Ultrafine platinum clusters achieved by metal-organic framework derived cobalt nanoparticle/porous carbon: Remarkable catalytic performance in dehydrogenation of ammonia borane. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2095-2102. doi: 10.11862/CJIC.20250025

    13. [13]

      Lixing LUShaoxian LIUJian XUZiqi JINJiongjia CHENGJiyang ZHAOFubo WANGHaiying WANG . [FeFe]-hydrogenase-containing compound and its photocatalytic H2-production performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2584-2590. doi: 10.11862/CJIC.20250200

    14. [14]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    15. [15]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    16. [16]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    17. [17]

      Yuhang ZhangYi LiYuehan CaoYingjie ShuaiYu ZhouYing Zhou . Regulating the formation type by Ir of intermediates to suppress product overoxidation in photocatalytic methane conversion. Acta Physico-Chimica Sinica, 2026, 42(2): 100173-0. doi: 10.1016/j.actphy.2025.100173

    18. [18]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    19. [19]

      Haiqiang Lin Weizheng Weng Jingdong Lin Mingshu Chen Xueming Fang Lefu Yang . Diverse Variables-Driven Catalytic Optimization: Experimental Enhancement and Instructional Design for Selective Methane Oxidation on Supported Nickel-based Catalysts. University Chemistry, 2025, 40(11): 327-336. doi: 10.12461/PKU.DXHX202505106

    20. [20]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

Metrics
  • PDF Downloads(218)
  • Abstract views(655)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return