Citation: WANG Hao, SONG Ling-Jun, LI Xing-Hu, YUE Li-Meng. Hydrogen Production from Partial Oxidation of Methane by Dielectric Barrier Discharge Plasma Reforming[J]. Acta Physico-Chimica Sinica, ;2015, 31(7): 1406-1412. doi: 10.3866/PKU.WHXB201504272 shu

Hydrogen Production from Partial Oxidation of Methane by Dielectric Barrier Discharge Plasma Reforming

  • Received Date: 23 January 2015
    Available Online: 27 April 2015

    Fund Project: 国家自然科学基金(21106002) (21106002)中央高校基本科研业务费专项资金(2011113073)资助项目 (2011113073)

  • This paper presents an in-house-designed dielectric barrier discharge (DBD) plasma reformer for hydrogen production via partial oxidation reforming of methane. We examined the effects of oxygen/carbon (O/C) molar ratio, feed flow rate, discharge gap, discharge zone length, filler diameter, filler shape, filler materials, discharge voltage, and discharge frequency on the hydrogen production performance i.e., CH4 conversion rate, H2 yield, and selectivity of products (H2, CO, and CO2). The experimental results showed that the parameters of the discharge zone played an important role in the CH4 conversion rate. For instance, CH4 conversion rate increased with increasing discharge zone lengths. When the discharge zone length increased from 5 to 20 cm, CH4 conversion rate increased from 6.87% to 22.26%, which corresponds to an improvement of 224%. Also, the fillers in the discharge zone strongly influenced the hydrogen production performance. Using reactors with fillers generated higher CH4 conversion rates. Moreover, using fillers with more appropriate dielectric constants is advantageous for practical application. The H2 yield and hydrogen selectivity increased with increasing discharge frequency. Specifically, when the discharge frequency increased from 1.5 to 7.0 kHz, H2 yield increased from 1.10% to 9.49%, and hydrogen selectivity increased from 21.18% to 30.06%. It is believed that the current results would serve as a od guideline in hydrogen production from hydrocarbon fuels by plasma reforming.

  • 加载中
    1. [1]

      (1) http://www.chinairn.com/news/20140211/085433111.html

    2. [2]

      (2) Li, X. H. Conspectus of Electric Vehicle; Beijing Institute of Technology Press: Beijing, 2005; pp 1-5. [李兴虎. 电动汽车概论. 北京: 北京理工大学出版社, 2005: 1-5.]

    3. [3]

      (3) Horng, R. F.; Wen, C. S.; Liauh, C. T.; Chao, Y.; Huang, C. T. Int. J. Hydrog. Energy 2008, 33 (24), 7619. doi: 10.1016/j.ijhydene.2008.09.078

    4. [4]

      (4) Bisaria, V.; Smith, R. J. B. Energy Convers. Manage 2013, No.76, 746.

    5. [5]

      (5) Bowers, B. J.; Zhao, J. L.; Ruffo, M.; Khan, R.; Dattatraya, D.; Dushman, N.; Beziat, J. C.; Boudjemaa, F. Int. J. Hydrog. Energy 2007, 32 (10-11), 1437. doi: 10.1016/j.ijhydene.2006.10.045

    6. [6]

      (6) Noor, T.; Gil, M. V.; Chen, D. Appl. Catal. B-Environ. 2014, No. 150-151, 585.

    7. [7]

      (7) Li, J.; Zhang, Q. J.; Long, X.; Qi, P.; Liu, Z. T.; Liu, Z.W. Chem. Eng. J. 2012, No. 187, 299.

    8. [8]

      (8) Chen, M. N.; Zhang, D. Y.; Thompson, L. T.; Ma, Z. F. Acta Phys. -Chim. Sin. 2011, 27 (9), 2185. [陈孟楠, 章冬云, Thompson, L. T., 马紫峰. 物理化学学报, 2011, 27 (9), 2185.] doi: 10.3866/PKU.WHXB20110824

    9. [9]

      (9) Yang, Z. B.; Zhang, Y.W.; Zhang, Y. Y.; Ding, W. Z.; Shen, P. J.; Liu, Y.; Zhou, Y. D.; Huang, S. Q. Acta Phys. -Chim. Sin. 2010, 26 (2), 350. [杨志彬, 张玉文, 张云妍, 丁伟中, 沈培俊, 刘勇, 周宇鼎, 黄少卿. 物理化学学报, 2010, 26 (2), 350.] doi: 10.3866/PKU.WHXB20100212

    10. [10]

      (10) Du, C. M.; Mo, J. M.; Tang, J.; Huang, D.W.; Mo, Z. X.; Wang, Q. K.; Ma, S. Z.; Chen, Z. J. Appl. Energy 2014, 133 (15), 70.

    11. [11]

      (11) Bundaleska, N.; Tsyganov, D.; Saavedra, R.; Tatarova, E.; Dias, F. M.; Ferreira, C.M. Int. J. Hydrog. Energy 2013, 38 (22), 9145. doi: 10.1016/j.ijhydene.2013.05.016

    12. [12]

      (12) Chaubey, R.; Sahu, S.; James, O. O.; Maity, S. Renew. Sust. Energ. Rev. 2013, No. 23, 443.

    13. [13]

      (13) Bromberg, L.; Cohn, D. R.; Hadidi, K.; Heywood, J. B.; Rabinovich, A. Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications. Diesel Engine Emission Reduction (DEER)Workshop, Coronado, CA, Aug 29-Sept 2, 2004.

    14. [14]

      (14) Zou, J. J.; Zhang, Y. P.; Liu, C. J. Int. J. Hydrog. Energy 2007, 32 (8), 958. doi: 10.1016/j.ijhydene.2006.09.023

    15. [15]

      (15) Song, L. J.; Li, X. H.; Zheng, T. L. Int. J. Hydrog. Energy 2008, 33 (19), 5060. doi: 10.1016/j.ijhydene.2008.07.090

    16. [16]

      (16) Rueangjitt, N.; Sreethawong, T.; Chavadej, S.; Sekiguchi, H. Chem. Eng. J. 2009, 155 (3), 874. doi: 10.1016/j.cej.2009.10.009

    17. [17]

      (17) Tao, J. L.; Xiong, Y. Q. Acta Phys. -Chim. Sin. 2013, 29 (1), 205. [陶晶亮, 熊源泉. 物理化学学报, 2013, 29 (1), 205.] doi: 10.3866/PKU.WHXB201210264

    18. [18]

      (18) Deng, W. Y.; Su, Y. X.; Liu, S. G.; Shen, H. G. Int. J. Hydrog. Energy 2014, 39 (17), 9169. doi: 10.1016/j.ijhydene.2014.04.033

    19. [19]

      (19) Xu, C.; Tu, X. J. Energy Chem. 2013, 22 (3), 420. doi: 10.1016/S2095-4956(13)60055-8

    20. [20]

      (20) Hooshmand, N.; Rahimpour, M. R.; Jahanmiri, A.; Taghvaei, H.; Mohamadzadeh, S. M. Ind. Eng. Chem. Res. 2013, 52 (12), 4443. doi: 10.1021/ie3022779

    21. [21]

      (21) Tu, X.; Whitehead, J. C. Appl. Catal. B-Environ. 2012, No. 125, 439.

    22. [22]

      (22) Reddy, E. L.; Biju, V. M.; Subrahmanyam, C. Int. J. Hydrog. Energy 2012, 37 (3), 2204. doi: 10.1016/j.ijhydene.2011.10.118

    23. [23]

      (23) Lee, D. H.; Kim, K. T.; Cha, M. S.; Song, Y. H. Int. J. Hydrog. Energy 2010, 35 (20), 10967. doi: 10.1016/j.ijhydene.2010.07.029

    24. [24]

      (24) York, A. P. E.; Xiao, T. C.; Green, M. L. H. Top. Catal. 2003, 22 (3-4), 345.

    25. [25]

      (25) Liu, C. M. Common Thermal Parameters Manual; China Metrology Publishing House: Beijing, 1989; p 537. [刘常满. 常用热工参数手册. 北京: 中国计量出版社, 1989: 537.]


  • 加载中
    1. [1]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    2. [2]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    3. [3]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    4. [4]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    5. [5]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    6. [6]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    7. [7]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    8. [8]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    9. [9]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    10. [10]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    13. [13]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    14. [14]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    15. [15]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    16. [16]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    17. [17]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    18. [18]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    19. [19]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    20. [20]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

Metrics
  • PDF Downloads(218)
  • Abstract views(444)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return