Citation: HU Hai-Feng, HE Tao. Controlled Aspect Ratio Modulation of ZnO Nanorods via Indium Doping[J]. Acta Physico-Chimica Sinica, ;2015, 31(7): 1421-1429. doi: 10.3866/PKU.WHXB201504221
-
In-doped ZnO nanorods (NRs) were synthesized by hydrothermal method. The X-ray diffraction (XRD) patterns showed that the ZnO lattices expanded upon In doping. According to the scanning electron microscopy (SEM) images, the aspect ratio (length- to- width ratio) of the ZnO NRs decreased as the concentration of In(III) in the precursor solution increased from 0% to 1.0% (atomic fraction, x), and increased with further increases in the In(III) concentration from 1.0%to 5.0%. The nonlinear modulation of the aspect ratio of ZnO NRs is believed to be due to the competition between the subst itutional doping of In3+ (InZn) and formation of InOOH intermediate, both of which are closely related to the behavior of In(OH)4-. In(OH)4- can be adsorbed onto zinc polar plane, and thus inhibits adsorption of Zn(OH)42- growth units. Furthermore, In(OH)4- can convert into InOOH, which can act as a crystal binder and enhance growth along the (002) plane. InZn can disrupt the zinc polar plane, resulting in the suppression of growth along the (002) facet. Therefore, the aspect ratio of ZnO NRs can be controllably modulated by changing the In concentration in the precursor solution. The current study furthers our understanding of the growth mechanism of In-doped ZnO, and presents a feasible method to prepare doped-ZnO NRs for real applications.
-
Keywords:
-
ZnO
, - In-doping,
- Hydrothermal method,
- Aspect ratio,
- Growth model
-
-
-
[1]
(1) Tam, K. H.; Cheung, C. K.; Leung, Y. H.; Djuriši?, A. B.; Ling, C. C.; Beling, C. D.; Fung, S.; Kwok, W. M.; Chan, W. K.; Phillips, D. L.; Ding, L.; Ge, W. K. J. Phys. Chem. B 2006, 110, 20865. doi: 10.1021/jp063239w
-
[2]
(2) Zhu, H. L.; Yang, D. R.; Zhang, H. Inorg. Mater. 2006, 42 (11), 1210. doi: 10.1134/S0020168506110070
-
[3]
(3) Kong, X. Y.; Ding, Y.; Yang, R. S.; Wang, Z. L. Science 2004, 303, 1348. doi: 10.1126/science.1092356
-
[4]
(4) Yen, K. Y.; Chiu, C. H.; Hsiao, C. Y.; Li, C.W.; Chou, C. H.; Lo, K. Y.; Chen, T. P.; Lin, C. H.; Lin, T. Y.; ng, J. R. J. Crystal Growth 2014, 387, 91. doi: 10.1016/j.jcrysgro.2013.10.042
-
[5]
(5) Bae, S. Y.; Na, C.W.; Kang, J. H.; Park, J. J. Phys. Chem. B 2005, 109, 2526. doi: 10.1021/jp0458708
-
[6]
(6) Xu, L.; Su, Y.; Chen, Y. Q.; Xiao, H. H.; Zhu, L.; Zhou, Q. T.; Li, S. J. Phys. Chem. B 2006, 110, 6637. doi: 10.1021/jp057476v
-
[7]
(7) Wang, B. Q.; Xia, C. H.; Fu, Q.; Wang, P.W.; Shan, X. D.; Yu, D. P. Acta Phys. -Chim. Sin. 2008, 24 (7), 1165. [王百齐, 夏春辉, 富强, 王朋伟, 单旭东, 俞大鹏. 物理化学学报, 2008, 24 (7), 1165.] doi: 10.3866/PKU.WHXB20080708
-
[8]
(8) Chen, H. S.; Qi, J. J.; Huang, Y. H.; Liao, Q. L.; Zhang, Y. Acta Phys. -Chim. Sin. 2007, 23 (1), 55. [陈红升, 齐俊杰, 黄运华, 廖庆亮, 张跃. 物理化学学报, 2007, 23 (1), 55.] doi: 10.1016/S1872-1508(07)60005-9
-
[9]
(9) Wang, J.; Zhuang, H. Z.; Xue, C. S.; Li, J. L.; Xu, P. Acta Phys. -Chim. Sin. 2010, 26 (10), 2840. [王杰, 庄惠照, 薛成山, 李俊林, 徐鹏. 物理化学学报, 2010, 26 (10), 2840.] doi: 10.3866/PKU.WHXB20101024
-
[10]
(10) Ghosh, S.; Saha, M.; De, S. K. Nanoscale 2014, 6, 7039. doi: 10.1039/c3nr05608b
-
[11]
(11) Su, J.; Li, H. F.; Huang, Y. H.; Xing, X. J.; Zhao, J.; Zhang, Y. Nanoscale 2011, 3, 2182. doi: 10.1039/c1nr10018a
-
[12]
(12) Ismardi, A.; Tiong, T. Y.; Dee, C. F.; Majlis, B. Y. AIP Conf. Proc. 2011, 1341, 25.
-
[13]
(13) Kumar, G. M.; Park, J. J. Colloid Interface Sci. 2014, 430, 229. doi: 10.1016/j.jcis.2014.05.045
-
[14]
(14) Pradhan, D.; Leung, K. T. Langmuir 2008, 24, 9707. doi: 10.1021/la8008943
-
[15]
(15) Xia, Y. J.; Guan, Z. S.; He, T. Chin. Phys. B 2014, 23 (8), 087701-1. [夏玉静, 管自生, 贺涛. 中国物理B, 2014, 23 (8), 087701-1.] doi: 10.1088/1674-1056/23/8/087701
-
[16]
(16) Yang, F.; Liu, W. H.; Wang, X.W.; Zheng, J.; Shi, R. Y.; Zhao, H.; Yang, H. Q. ACS Appl. Mater. Interfaces 2012, 4, 3852. doi: 10.1021/am300561w
-
[17]
(17) Bae, S. Y.; Choi, H. C.; Na, C.W.; Park, J. App. Phys. Lett. 2005, 86, 033102. doi: 10.1063/1.1851591
-
[18]
(18) Ahmad, M.; Sun, H.; Zhu, J. ACS Appl. Mater. Interfaces 2011, 3, 1299. doi: 10.1021/am200099c
-
[19]
(19) Height, M. J.; Mädler, L.; Pratsinis, S. E. Chem. Mater. 2006, 18 (2), 572. doi: 10.1021/cm052163y
-
[20]
(20) Fu, Z. P.; Yang, B. F.; Li, L.; Dong, W.W.; Jia, C.; Wu, W. J. Phys.: Condes. Matter 2003, 15, 2867. doi: 10.1088/0953-8984/15/17/335
-
[21]
(21) Mahmood, K.; Park, S. B.; Sung, H. J. J. Mater. Chem. C 2013, 1, 3138. doi: 10.1039/c3tc00082f
-
[22]
(22) Wanger, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F.; Muilenberg, G. E. Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer Corp.: Eden Prairie, 1979; pp 1-190.
-
[23]
(23) Faur, M.; Faur, M.; Jayne, D. T.; radia, M.; radia, C. Surface and Interface Analysis 1990, 15, 641.
-
[24]
(24) Kazmerski, L. L.; Jamjoum, O.; Ireland, P. J.; Deb, S. K.; Mickelsen, R. A.; Chen, W. J. Vac. Sci. Technol. 1981, 19, 467. doi: 10.1116/1.571040
-
[25]
(25) Lin, A.W. C.; Armstrong, N. R.; Kuwana, T. Anal. Chem. 1977, 49 (8), 1228. doi: 10.1021/ac50016a042
-
[26]
(26) McGuire, G. E.; Schweitzer, G. K.; Carlson, T. A. Inorg. Chem. 1973, 12, 2450. doi: 10.1021/ic50128a045
-
[27]
(27) Nefedov, V. I.; Gati, D.; Dzhurinskii, B. F.; Sergushin, N. P.; Salyn, Y. V. Zh. Neorg. Khimii 1975, 20, 2307.
-
[28]
(28) Cahen, D.; Ireland, P. J.; Kazmerski, L. L.; Thiel, F. A. J. Appl. Phys. 1985, 57, 4761. doi: 10.1063/1.335341
-
[29]
(29) Bertrand, P. A. J. Vac. Sci. Technol. 1981, 18, 28. doi: 10.1116/1.570694
-
[30]
(30) Clark, D. T.; Fok, T. Thin Solid Films 1980, 70 (2), 261. doi: 10.1016/0040-6090(80)90367-3
-
[31]
(31) Fan, J. C. C.; odenough, J. B. J. Appl. Phys. 1977, 48, 3524. doi: 10.1063/1.324149
-
[32]
(32) Hewitt, R.W.; Winograd, N. J. Appl. Phys. 1980, 51, 2620. doi: 10.1063/1.327991
-
[33]
(33) Wang, X. H.; Sun, L. X. One Process of Orthorhombic InOOH Synthesized by Microemulsion-Solvothermal Method. CN 103241767 A, 2013-08-14. [王晓华, 孙兰轩. 一种斜方晶 InOOH 的微乳-溶剂热工艺: 中国, CN 103241767 A [P]. 2013- 08-14.]
-
[34]
(34) Liu, Q. S.; Lu, W. G.; Ma, A. H.; Tang, J. K.; Lin, J.; Fang, J. Y. J. Am. Chem. Soc. 2005, 127, 5276. doi: 10.1021/ja042550t
-
[35]
(35) Ahmad, M.; Zhao, J.; Iqbal, J.; Miao, W.; Xie, L.; Mo, R. G.; Zhu, J. J. Phys. D: Appl. Phys. 2009, 42, 165406. doi: 10.1088/0022-3727/42/16/165406
-
[36]
(36) vender, K.; Boyle, D. S.; Kenway, P. B.; O'Brien, P. J. Mater. Chem. 2004, 14, 2575. doi: 10.1039/b404784b
-
[37]
(37) Wood, S. A.; Samson, I. M. Ore Geol. Rev. 2006, 28, 57. doi: 10.1016/j.oregeorev.2003.06.002
-
[38]
(38) Wang, B. G.; Callahan, M. J.; Xu, C. C.; Bouthillette, L. O.; Giles, N. C.; Bliss, D. F. J. Cryst. Growth 2007, 304, 73. doi: 10.1016/j.jcrysgro.2007.01.047
-
[39]
(39) Morales, A. E.; Zaldivar, M. H.; Pal, U. Opt. Mater. 2006, 29, 100. doi: 10.1016/j.optmat.2006.03.010
-
[40]
(40) Wang, B. The Preparation of In2O3 Nanomaterials with Different Phase Structures and Their Gas Sensing Properties. M. S. Dissertation, Beijing University of Chemical Technology, Beijing, 2011. [王彬. 不同晶型氧化铟纳米材料的制备及其气敏性能研究[D]. 北京: 北京化工大学, 2011.]
-
[41]
(41) Zhuang, Z. B.; Peng, Q.; Liu, J. F.; Wang, X.; Li, Y. D. Inorg. Chem. 2007, 46, 5179. doi: 10.1021/ic061999f
-
[42]
(42) Xu, X. X.; Wang, X. Inorg. Chem. 2009, 48, 3890. doi: 10.1021/ic802449w
-
[43]
(43) Chen, C. L.; Chen, D. R.; Jiao, X. L.; Wang, C. Q. Chem. Commun. 2006, 4632.
-
[44]
(44) Li, Z. H.; Xie, Z. P.; Zhang, Y. F.; Wu, L.; Wang, X. X.; Fu, X. Z. J. Phys. Chem. C 2007, 111, 18348. doi: 10.1021/jp076107r
-
[45]
(45) Yu, D. B.; Yu, S. H.; Zhang, S. Y.; Zuo, J.; Wang, D. B.; Qian, Y. T. Adv. Funct. Mater. 2003, 13, 497. doi: 10.1002/adfm.200304303
-
[46]
(46) Hafeez, M.; Zhai, T. Y.; Bhatti, A. S.; Bando, Y.; lberg, D. Cryst. Growth Des. 2012, 12, 4935. doi: 10.1021/cg300870y
-
[47]
(47) Pacholski, C.; Kornowski, A.; Weller, H. Angew. Chem. Int. Edit. 2002, 41, 1188.
-
[48]
(48) Sangwal, K. J. Cryst. Growth 1998, 192, 200. doi: 10.1016/S0022-0248(98)00424-2
-
[49]
(49) Yang, H. X. Solvothermal Synthesis of In2O3 and CeO2 Nanostructures: Structural Studies and Application. Ph. D. Dissertation, Shandong University, Jinan, 2013. [杨红晓. 溶剂热法合成氧化铟、氧化铈纳米结构及其性能研究[D]. 济南: 山东大学, 2013.]
-
[1]
-
-
[1]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[2]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[3]
Jie Ren , Hao Zong , Yaqun Han , Tianyi Liu , Shufen Zhang , Qiang Xu , Suli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350
-
[4]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[5]
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
-
[6]
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
-
[7]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[8]
Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064
-
[9]
Yan ZHAO , Xiaokang JIANG , Zhonghui LI , Jiaxu WANG , Hengwei ZHOU , Hai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242
-
[10]
Shipeng WANG , Shangyu XIE , Luxian LIANG , Xuehong WANG , Jie WEI , Deqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094
-
[11]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[12]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[13]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[14]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[15]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[16]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[17]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[18]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[19]
Yuena Yang , Xufang Hu , Yushan Liu , Yaya Kuang , Jian Ling , Qiue Cao , Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125
-
[20]
Junqiao Zhuo , Xinchen Huang , Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100
-
[1]
Metrics
- PDF Downloads(371)
- Abstract views(431)
- HTML views(2)