Citation: YANG Fan, YU Peng-Yun, ZHAO Juan, ZHAO Yan, WANG Jian-Ping. Intermolecular Hydrogen Bonding Structural Dynamics in Ethylene Glycol by Femtosecond Nonlinear Infrared Spectroscopy[J]. Acta Physico-Chimica Sinica, ;2015, 31(7): 1275-1282. doi: 10.3866/PKU.WHXB201504211 shu

Intermolecular Hydrogen Bonding Structural Dynamics in Ethylene Glycol by Femtosecond Nonlinear Infrared Spectroscopy

  • Received Date: 14 January 2015
    Available Online: 21 April 2015

    Fund Project: 国家自然科学基金(21103200, 20727001, 91121020) (21103200, 20727001, 91121020)中国科学院重大科研装备研制项目(Y2201220)资助 (Y2201220)

  • In this work, we examined the structural and ―OH stretching vibrational dynamics of ethylene glycol (EG) solvated in acetonitrile (MeCN), acetone (AC), tetrahydrofuran (THF), and dimethylsulfoxide (DMSO) using steady-state linear infrared (IR) spectroscopy and ultrafast pump-probe IR spectroscopy. The results suggested that the frequency position, bandwidth, and vibrational relaxation of the ―OH stretching vibration that participate in the formation of intermolecular hydrogen bonds (IHBs) were strongly influenced by the type of solvent. At least two types of IHBs were detected in the EG solution including clustered solute-solute IHBs and solute-solvent IHBs. Quantum chemical calculations predicted a similar solvent dependence of the ―OH stretching vibrational frequency to that observed in the IR experiments. Furthermore, we found that the IHB-involved ―OH stretching mode in the case of solute-solvent clusters displayed the slowest population relaxation dynamics in the case of EG in MeCN. The relaxation became slightly faster in AC and even faster in THF. The fastest dynamics was observed in the case of EG in DMSO. However, in each solvent environment examined, the IHB-involved ―OH stretching mode in the solute-solute cluster displayed the fastest population relaxation. The results obtained in this study provide further insights into different IHB structural dynamics in co-existing solute-solute and solutesolvent clusters.

  • 加载中
    1. [1]

      (1) Nelson, H. C. M.; Finch, J. T.; Luisi, B. F.; Klug, A. Nature 1987, 330 (6145), 221. doi: 10.1038/330221a0

    2. [2]

      (2) Sundaralingam, M.; Sekharudu, Y. C. Science 1989, 244 (4910), 1333. doi: 10.1126/science.2734612

    3. [3]

      (3) Foti, M. C.; Barclay, L. R. C.; In ld, K. U. J. Am. Chem. Soc. 2002, 124 (43), 12881. doi: 10.1021/ja020757l

    4. [4]

      (4) Kim, S. G.; Kim, K. H.; Kim, Y. K.; Shin, S. K.; Ahn, K. H. J. Am. Chem. Soc. 2003, 125 (45), 13819. doi: 10.1021/ja037031p

    5. [5]

      (5) Clarkson, J. R.; Baquero, E.; Shubert, V. A.; Myshakin, E. M.; Jordan, K. D.; Zwier, T. S. Science 2005, 307 (5714), 1443. doi: 10.1126/science.1106977

    6. [6]

      (6) Markle, T. F.; Mayer, J. M. Angew. Chem. 2008, 120 (4), 750.

    7. [7]

      (7) Stillinger, F. H. Science 1980, 209 (4455), 451. doi: 10.1126/science.209.4455.451

    8. [8]

      (8) Deàk, J. C.; Rhea, S. T.; Iwaki, L. K.; Dlott, D. D. J. Phys. Chem. A 2000, 104 (21), 4866. doi: 10.1021/jp994492h

    9. [9]

      (9) Woutersen, S.; Emmerichs, U.; Bakker, H. J. Science 1997, 278 (5338), 658. doi: 10.1126/science.278.5338.658

    10. [10]

      (10) Kropman, M. F.; Nienhuys, H. K.; Woutersen, S.; Bakker, H. J. J. Phys. Chem. A 2001, 105 (19), 4622. doi: 10.1021/jp010057n

    11. [11]

      (11) Kropman, M. F.; Bakker, H. J. Science 2001, 291 (5511), 2118. doi: 10.1126/science.1058190

    12. [12]

      (12) Woutersen, S.; Bakker, H. J. Nature 1999, 402 (6761), 507. doi: 10.1038/990058

    13. [13]

      (13) Bakker, H. J.; Woutersen, S.; Nienhuys, H. K. Chem. Phys. 2000, 258 (2-3), 233.

    14. [14]

      (14) Piletic, I. R.; Moilanen, D. E.; Levinger, N. E.; Fayer, M. D. J. Am. Chem. Soc. 2006, 128 (32), 10366. doi: 10.1021/ja062549p

    15. [15]

      (15) Fecko, C. J.; Loparo, J. J.; Roberts, S. T.; Tokmakoff, A. J. Chem. Phys. 2005, 122 (5), 054506. doi: 10.1063/1.1839179

    16. [16]

      (16) Bakker, H. J.; Gilijamse, J. J.; Lock, A. J. ChemPhysChem 2005, 6 (6), 1146.

    17. [17]

      (17) Roberts, S. T.; Ramasesha, K.; Tokmakoff, A. Accounts Chem. Res. 2009, 42 (9), 1239. doi: 10.1021/ar900088g

    18. [18]

      (18) Li, Q.; Wu, G.; Yu, Z. J. Am. Chem. Soc. 2006, 128 (5), 1438. doi: 10.1021/ja0569149

    19. [19]

      (19) Li, Q.; Wang, N.; Yu, Z. Journal of Molecular Structure- Theorem 2008, 862 (1-3), 74.

    20. [20]

      (20) Li, D.; Yang, F.; Han, C.; Zhao, J.; Wang, J. J. Phys. Chem. Lett. 2012, 3 (23), 3665. doi: 10.1021/jz301652v

    21. [21]

      (21) Woutersen, S.; Emmerichs, U.; Bakker, H. J. J. Chem. Phys. 1997, 107 (5), 1483. doi: 10.1063/1.474501

    22. [22]

      (22) Asbury, J. B.; Steinel, T.; Stromberg, C.; Gaffney, K. J.; Piletic, I. R.; Fayer, M. D. J. Chem. Phys. 2003, 119 (24), 12981.

    23. [23]

      (23) Laenen, R.; Simeonidis, K. Chem. Phys. Lett. 1999, 299 (6), 589. doi: 10.1016/S0009-2614(98)01303-7

    24. [24]

      (24) Nagy, P. I.; Dunn, W. J.; Ala na, G.; Ghio, C. J. Am. Chem. Soc. 1992, 114 (12), 4752. doi: 10.1021/ja00038a044

    25. [25]

      (25) Trindle, C.; Crum, P.; Douglass, K. J. Phys. Chem. A 2003, 107 (32), 6236. doi: 10.1021/jp034598j

    26. [26]

      (26) Foti, M. C.; DiLabio, G. A.; In ld, K. U. J. Am. Chem. Soc. 2003, 125 (47), 14642. doi: 10.1021/ja036168c

    27. [27]

      (27) Lopes Jesus, A. J.; Rosado, M. T. S.; Leitão, M. L. P.; Redinha, J. S. J. Phys. Chem. A 2003, 107 (19), 3891. doi: 10.1021/jp027123l

    28. [28]

      (28) Crittenden, D. L.; Thompson, K. C.; Jordan, M. J. T. J. Phys. Chem. A 2005, 109 (12), 2971. doi: 10.1021/jp045233h

    29. [29]

      (29) Han, C.; Zhao, J.; Yang, F.; Wang, J. J. Phys. Chem. A 2013, 117 (29), 6105. doi: 10.1021/jp400096a

    30. [30]

      (30) Crupi, V.; Maisano, G.; Majolino, D.; Migliardo, P.; Venuti, V. J. Phys. Chem. A 2000, 104 (17), 3933. doi: 10.1021/jp993900e

    31. [31]

      (31) Ma, X.; Wang, J. J. Phys. Chem. A 2009, 113 (21), 6070. doi: 10.1021/jp9016085

    32. [32]

      (32) Olschewski, M.; Lindner, J.; Vöhringer, P. Angew. Chem. Int. Edit. 2013, 52 (9), 2602. doi: 10.1002/anie.v52.9

    33. [33]

      (33) Liu, Y. L.; Yang, F.; Wang, J. P. Acta Chim. Sin. 2013, 71(5), 761. [刘英亮, 杨帆, 王建平. 化学学报, 2013, 71 (5), 761.] doi: 10.6023/A13020166

    34. [34]

      (34) Yang, F.; Liu, Y. L.; Wang, J. P. Acta Phys. -Chim. Sin. 2012, 28 (4), 759. [杨帆, 刘英亮, 王建平. 物理化学学报, 2012, 28 (4), 759.] doi: 10.3866/PKU.WHXB201202023

    35. [35]

      (35) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1983, 78 (6), 4066. doi: 10.1063/1.445134

    36. [36]

      (36) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83 (2), 735. doi: 10.1063/1.449486

    37. [37]

      (37) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision A. 02; Gaussian Inc.: Pittsburgh, PA, 2009.


  • 加载中
    1. [1]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    2. [2]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    3. [3]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    4. [4]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    5. [5]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    6. [6]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    7. [7]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    8. [8]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    9. [9]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    10. [10]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    11. [11]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    12. [12]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    13. [13]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    14. [14]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    15. [15]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    16. [16]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    17. [17]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    18. [18]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    19. [19]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    20. [20]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

Metrics
  • PDF Downloads(278)
  • Abstract views(429)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return