Citation: LI Min-Jie, DIAO Ling, KOU Li, LI Zhong-Gao, LU Wen-Cong. Hydroxyl Radical Reaction with the Guanine-Cytosine Base Pair: A Density Functional Theory Study[J]. Acta Physico-Chimica Sinica, ;2015, 31(6): 1007-1014. doi: 10.3866/PKU.WHXB201504171 shu

Hydroxyl Radical Reaction with the Guanine-Cytosine Base Pair: A Density Functional Theory Study

  • Received Date: 9 February 2015
    Available Online: 17 April 2015

    Fund Project: 国家自然科学基金(21273145)资助项目 (21273145)

  • To address problems such as aging, mutation, and cancer, it is of great importance to understand the damage mechanism of DNA induced by hydroxyl radical. In this study, the abstraction reaction mechanism of hydroxyl radical with guanine-cytosine (GC) base pair in aqueous phase under the polarized continuum model (PCM) has been explored by using density functional theory (DFT). The results indicated that all the abstraction reactions in GC base pair were thermodynamically exothermic, and the stability of dehydrogenation radicals decreased in the order of (H2b-GC)·>(GC-H4b)·>(GC-H6)·>(GC-H5)·~(H8-GC)·. The reaction energy of H2b abstraction pathway was the lowest among all investigated pathways, thus indicating that the reaction conversion of (H2b-GC)· was the highest. In the five hydrogen abstraction pathways, the local energy barriers with respect to the corresponding reactant complexes increased in the following order: H2b

  • 加载中
    1. [1]

      (1) Li, H. L.; Jia, Y. X.; Hu, Y. D. Acta Phys. -Chim. Sin. 2012, 28 (3), 573. [李海兰, 贾玉香, 胡仰栋. 物理化学学报, 2012, 28 (3), 573.] doi: 10.3866/PKU.WHXB201112191

    2. [2]

      (2) Gethard, K.; Sae-Khow, O.; Mitra, S. ACS Appl. Mater. Interfaces 2011, 3 (2), 110. doi: 10.1021/am100981s

    3. [3]

      (3) Iijima, S. Nature 1991, 354 (6348), 56. doi: 10.1038/354056a0

    4. [4]

      (4) Pendergast, M. M.; Hoek, E. M. V. Energy Environ. Sci. 2011, 4 (6), 1946. doi: 10.1039/c0ee00541j

    5. [5]

      (5) Verweij, H.; Schillo, M. C.; Li, J. Small 2007, 3 (12), 1996.

    6. [6]

      (6) Holt, J. K.; Park, H. G.; Wang, Y. M.; Stadermann, M.; Artyukhin, A. B.; Gri ropoulos, C. P.; Noy, A.; Bakajin, O. Science 2006, 312 (5776), 1034. doi: 10.1126/science.1126298

    7. [7]

      (7) Kim, H. J.; Choi, K.; Baek, Y.; Kim, D. G.; Shim, J.; Yoon, J.; Lee, J. C. ACS Appl. Mater. Interfaces 2014, 6, 2826.

    8. [8]

      (8) Kiani, F.; Khosravi, T.; Moradi, F.; Rahbari, P.; Aghaei, M. J.; Arabi, M.; Tajik, H.; Kalantarinejad, R. J. Comput. Theor. Nanosci. 2014, 11 (5), 1237. doi: 10.1166/jctn.2014.3488

    9. [9]

      (9) Jia, Y. X.; Li, H. L.; Wang, M.; Wu, L. Y.; Hu, Y. D. Sep. Purif. Technol. 2010, 75, 55. doi: 10.1016/j.seppur.2010.07.011

    10. [10]

      (10) Shen, C.; Brozena, A. H.; Wang, Y. H. Nanoscale 2011, 3 (2), 503. doi: 10.1039/C0NR00620C

    11. [11]

      (11) Pfeiffer, R.; Pichler, T.; Kim, Y. A.; Kuzmany, H. Double-Wall Carbon Nanotubes. In Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications; Jorio, A., Dresselhaus, G., Dresselhaus, M. S. Eds.; Springer-Verlag Berlin: Berlin, 2008; Vol. 111, pp 495-530.

    12. [12]

      (12) Wang, L; Zhang, H.W.; Wang, J. B. Acta Phys. Sin. 2007, 56 (3), 1506. [王磊, 张洪武, 王晋宝. 物理学报, 2007, 56 (3), 1506.]

    13. [13]

      (13) Liu, K. H.; Wang, W. L.; Xu, Z.; Bai, X. D.; Wang, E. G.; Yao, Y. G.; Zhang, J.; Liu, Z. F. J. Am. Chem. Soc. 2009, 131 (1), 62. doi: 10.1021/ja808593v

    14. [14]

      (14) Vijayaraghavan, V.; Wong, C. H. Comput. Mater. Sci. 2014, 89, 36. doi: 10.1016/j.commatsci.2014.03.025

    15. [15]

      (15) Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. 1996, 14 (1), 33. doi: 10.1016/0263-7855(96)00018-5

    16. [16]

      (16) Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. J. Comput. Chem. 2005, 26 (16), 1781.

    17. [17]

      (17) Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; MacKerell, A. D. J. Comput. Chem. 2010, 31 (4), 671.

    18. [18]

      (18) Lennard-Jones, J. E. Proc. Phys. Soc. 1931, 43 (5), 461. doi: 10.1088/0959-5309/43/5/301

    19. [19]

      (19) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103 (19), 8577. doi: 10.1063/1.470117

    20. [20]

      (20) MacKerell, A. D.; Banavali, N.; Foloppe, N. Biopolymers 2000, 56 (4), 257.

    21. [21]

      (21) Alexiadis, A.; Kassinos, S. Chem. Rev. 2008, 108 (12), 5014. doi: 10.1021/cr078140f

    22. [22]

      (22) Chen, Q. L; Kong, X.; Lu, D. N.; Liu, Z. CIESC Journal 2014, 65 (1), 319. [陈其乐, 孔宪, 卢滇楠, 刘铮. 化工学报, 2014, 65 (1), 319.]

    23. [23]

      (23) Moskowitz, I.; Snyder, M. A.; Mittal, J. J. Chem. Phys. 2014, 141 (18), 18C532.

    24. [24]

      (24) Zuo, G.; Shen, R.; Ma, S.; Guo, W. ACS Nano 2010, 4 (1), 205. doi: 10.1021/nn901334w

    25. [25]

      (25) Lee, H. S.; Tuckerman, M. E. J. Chem. Phys. 2007, 126 (16), 164501. doi: 10.1063/1.2718521

    26. [26]

      (26) Xu, H. F.; Stern, H. A.; Berne, B. J. J. Phys. Chem. B 2002, 106 (8), 2054. doi: 10.1021/jp013426o

    27. [27]

      (27) Chen, C.; Li, W. Z.; Song, Y. C.; Weng, L. D. Acta Phys. -Chim. Sin. 2011, 27 (6), 1372. [陈聪, 李维仲, 宋永臣, 翁林岽. 物理化学学报, 2011, 27 (6), 1372.] doi: 10.3866/PKU.WHXB20110626

    28. [28]

      (28) Elola, M. D.; Ladanyi, B. M. J. Chem. Phys. 2006, 125 (18), 184506. doi: 10.1063/1.2364896

    29. [29]

      (29) Zhang, N.; Li, W. Z.; Chen, C.; Zuo, J. G. Acta Phys. -Chim. Sin. 2013, 29 (9), 1891 [张宁, 李维仲, 陈聪, 左建国. 物理化学学报, 2013, 29 (9), 1891.] doi: 10.3866/PKU.WHXB201307121

    30. [30]

      (30) Tu, Y. S.; Lu, H. J.; Zhang, Y. Z.; Huynh, T.; Zhou, R. H. J. Chem. Phys. 2013, 138 (1), 015104. doi: 10.1063/1.4773221

    31. [31]

      (31) Hummer, G.; Rasaiah, J. C.; Noworyta, J. P. Nature 2001, 414 (6860), 188. doi: 10.1038/35102535

    32. [32]

      (32) Shao, Q.; Zhou, J.; Lu, L. H.; Lu, X. H.; Zhu, Y. D.; Jiang, S. Y. Nano Lett. 2009, 9, 989. doi: 10.1021/nl803044k

    33. [33]

      (33) Corry, B. J. Phys. Chem. B 2008, 112 (5), 1427. doi: 10.1021/jp709845u

    34. [34]

      (34) Cohen-Tanugi, D.; Grossman, J. C. Nano Lett. 2012, 12 (7), 3602. doi: 10.1021/nl3012853

    35. [35]

      (35) Hilder, T. A.; rdon, D.; Chung, S. H. Small 2009, 5 (19), 2183. doi: 10.1002/smll.v5:19

    36. [36]

      (36) Corry, B. Energy Environ. Sci. 2011, 4 (3), 751. doi: 10.1039/c0ee00481b

    37. [37]

      (37) Jia, Y. X.; Chen, L. J.; Li, Y.; Hu, Y. D. J. Chem Eng. Chin. Univ. 2014, 28 (4), 707. [贾玉香, 陈立军, 李燕, 胡仰栋. 高校化学工程学报, 2014, 28 (4), 707.]

    38. [38]

      (38) Humplik, T.; Lee, J.; O'Hern, S. C.; Fellman, B. A.; Baig, M. A.; Hassan, S. F.; Atieh, M. A.; Rahman, F.; Laoui, T.; Karnik, R.; Wang, E. N. Nanotechnology 2011, 22 (29), 292001. doi: 10.1088/0957-4484/22/29/292001

    39. [39]

      (39) Ho, T. A.; Striolo, A. Mol. Simul. 2014, 40 (14), 1190. doi: 10.1080/08927022.2013.854893

    40. [40]

      (40) ng, X. J.; Li, J. Y.; Lu, H. J.; Wan, R. Z.; Li, J. C.; Hu, J.; Fang, H. P. Nat. Nanotechnol. 2007, 2 (11), 709. doi: 10.1038/nnano.2007.320

    41. [41]

      (41) Zou, J. G.; Ji, B. H.; Feng, X. Q.; Gao, H. J. Small 2006, 2 (11), 1348.

    42. [42]

      (42) Zhu, F. Q.; Schulten, K. Biophys. J. 2003, 85, 236. doi: 10.1016/ S0006-3495(03)74469-5

    43. [43]

      (43) Kirkwood, J. G. J. Chem. Phys. 1935, 3 (5), 300. doi: 10.1063/1.1749657

    44. [44]

      (44) Zuo, J. C. Physical Mechanics Research on the Transport Properties of ConfinedWater Molecules at Nanoscale. Ph. D. Dissertation, Nanjing University of Aeronautics and Astronautics, Nanjing, 2012. [左广超. 纳米受限环境中水分子输运的物理力学研究[D]. 南京: 南京航空航天大学, 2012.]

    45. [45]

      (45) Chen, C. Theoretical Analysis of Intracellular Ice Growth and Molecular Dynamics Simulation of Hydrogen Bonding Characteristics of Cryoprotective Agent Solutions. Ph. D. Dissertation, Dalian University of Technology, Dalian, 2009. [陈聪. 胞内冰生长的理论分析及保护剂溶液氢键特性的 MD 模拟[D]. 大连: 大连理工大学, 2009.]

    46. [46]

      (46) Song, X. Z.; Fan, J. F.; Liu, D.; Li, H.; Li, R. J. Mol. Model. 2013, 19 (10), 4271. doi: 10.1007/s00894-013-1899-4


  • 加载中
    1. [1]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    2. [2]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    3. [3]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    6. [6]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    7. [7]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    8. [8]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    9. [9]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    10. [10]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    11. [11]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    12. [12]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    13. [13]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    14. [14]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    15. [15]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    16. [16]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    19. [19]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    20. [20]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

Metrics
  • PDF Downloads(444)
  • Abstract views(915)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return