Citation: LI Min-Jie, DIAO Ling, KOU Li, LI Zhong-Gao, LU Wen-Cong. Hydroxyl Radical Reaction with the Guanine-Cytosine Base Pair: A Density Functional Theory Study[J]. Acta Physico-Chimica Sinica, ;2015, 31(6): 1007-1014. doi: 10.3866/PKU.WHXB201504171 shu

Hydroxyl Radical Reaction with the Guanine-Cytosine Base Pair: A Density Functional Theory Study

  • Received Date: 9 February 2015
    Available Online: 17 April 2015

    Fund Project: 国家自然科学基金(21273145)资助项目 (21273145)

  • To address problems such as aging, mutation, and cancer, it is of great importance to understand the damage mechanism of DNA induced by hydroxyl radical. In this study, the abstraction reaction mechanism of hydroxyl radical with guanine-cytosine (GC) base pair in aqueous phase under the polarized continuum model (PCM) has been explored by using density functional theory (DFT). The results indicated that all the abstraction reactions in GC base pair were thermodynamically exothermic, and the stability of dehydrogenation radicals decreased in the order of (H2b-GC)·>(GC-H4b)·>(GC-H6)·>(GC-H5)·~(H8-GC)·. The reaction energy of H2b abstraction pathway was the lowest among all investigated pathways, thus indicating that the reaction conversion of (H2b-GC)· was the highest. In the five hydrogen abstraction pathways, the local energy barriers with respect to the corresponding reactant complexes increased in the following order: H2b

  • 加载中
    1. [1]

      (1) Li, H. L.; Jia, Y. X.; Hu, Y. D. Acta Phys. -Chim. Sin. 2012, 28 (3), 573. [李海兰, 贾玉香, 胡仰栋. 物理化学学报, 2012, 28 (3), 573.] doi: 10.3866/PKU.WHXB201112191

    2. [2]

      (2) Gethard, K.; Sae-Khow, O.; Mitra, S. ACS Appl. Mater. Interfaces 2011, 3 (2), 110. doi: 10.1021/am100981s

    3. [3]

      (3) Iijima, S. Nature 1991, 354 (6348), 56. doi: 10.1038/354056a0

    4. [4]

      (4) Pendergast, M. M.; Hoek, E. M. V. Energy Environ. Sci. 2011, 4 (6), 1946. doi: 10.1039/c0ee00541j

    5. [5]

      (5) Verweij, H.; Schillo, M. C.; Li, J. Small 2007, 3 (12), 1996.

    6. [6]

      (6) Holt, J. K.; Park, H. G.; Wang, Y. M.; Stadermann, M.; Artyukhin, A. B.; Gri ropoulos, C. P.; Noy, A.; Bakajin, O. Science 2006, 312 (5776), 1034. doi: 10.1126/science.1126298

    7. [7]

      (7) Kim, H. J.; Choi, K.; Baek, Y.; Kim, D. G.; Shim, J.; Yoon, J.; Lee, J. C. ACS Appl. Mater. Interfaces 2014, 6, 2826.

    8. [8]

      (8) Kiani, F.; Khosravi, T.; Moradi, F.; Rahbari, P.; Aghaei, M. J.; Arabi, M.; Tajik, H.; Kalantarinejad, R. J. Comput. Theor. Nanosci. 2014, 11 (5), 1237. doi: 10.1166/jctn.2014.3488

    9. [9]

      (9) Jia, Y. X.; Li, H. L.; Wang, M.; Wu, L. Y.; Hu, Y. D. Sep. Purif. Technol. 2010, 75, 55. doi: 10.1016/j.seppur.2010.07.011

    10. [10]

      (10) Shen, C.; Brozena, A. H.; Wang, Y. H. Nanoscale 2011, 3 (2), 503. doi: 10.1039/C0NR00620C

    11. [11]

      (11) Pfeiffer, R.; Pichler, T.; Kim, Y. A.; Kuzmany, H. Double-Wall Carbon Nanotubes. In Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications; Jorio, A., Dresselhaus, G., Dresselhaus, M. S. Eds.; Springer-Verlag Berlin: Berlin, 2008; Vol. 111, pp 495-530.

    12. [12]

      (12) Wang, L; Zhang, H.W.; Wang, J. B. Acta Phys. Sin. 2007, 56 (3), 1506. [王磊, 张洪武, 王晋宝. 物理学报, 2007, 56 (3), 1506.]

    13. [13]

      (13) Liu, K. H.; Wang, W. L.; Xu, Z.; Bai, X. D.; Wang, E. G.; Yao, Y. G.; Zhang, J.; Liu, Z. F. J. Am. Chem. Soc. 2009, 131 (1), 62. doi: 10.1021/ja808593v

    14. [14]

      (14) Vijayaraghavan, V.; Wong, C. H. Comput. Mater. Sci. 2014, 89, 36. doi: 10.1016/j.commatsci.2014.03.025

    15. [15]

      (15) Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. 1996, 14 (1), 33. doi: 10.1016/0263-7855(96)00018-5

    16. [16]

      (16) Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. J. Comput. Chem. 2005, 26 (16), 1781.

    17. [17]

      (17) Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; MacKerell, A. D. J. Comput. Chem. 2010, 31 (4), 671.

    18. [18]

      (18) Lennard-Jones, J. E. Proc. Phys. Soc. 1931, 43 (5), 461. doi: 10.1088/0959-5309/43/5/301

    19. [19]

      (19) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103 (19), 8577. doi: 10.1063/1.470117

    20. [20]

      (20) MacKerell, A. D.; Banavali, N.; Foloppe, N. Biopolymers 2000, 56 (4), 257.

    21. [21]

      (21) Alexiadis, A.; Kassinos, S. Chem. Rev. 2008, 108 (12), 5014. doi: 10.1021/cr078140f

    22. [22]

      (22) Chen, Q. L; Kong, X.; Lu, D. N.; Liu, Z. CIESC Journal 2014, 65 (1), 319. [陈其乐, 孔宪, 卢滇楠, 刘铮. 化工学报, 2014, 65 (1), 319.]

    23. [23]

      (23) Moskowitz, I.; Snyder, M. A.; Mittal, J. J. Chem. Phys. 2014, 141 (18), 18C532.

    24. [24]

      (24) Zuo, G.; Shen, R.; Ma, S.; Guo, W. ACS Nano 2010, 4 (1), 205. doi: 10.1021/nn901334w

    25. [25]

      (25) Lee, H. S.; Tuckerman, M. E. J. Chem. Phys. 2007, 126 (16), 164501. doi: 10.1063/1.2718521

    26. [26]

      (26) Xu, H. F.; Stern, H. A.; Berne, B. J. J. Phys. Chem. B 2002, 106 (8), 2054. doi: 10.1021/jp013426o

    27. [27]

      (27) Chen, C.; Li, W. Z.; Song, Y. C.; Weng, L. D. Acta Phys. -Chim. Sin. 2011, 27 (6), 1372. [陈聪, 李维仲, 宋永臣, 翁林岽. 物理化学学报, 2011, 27 (6), 1372.] doi: 10.3866/PKU.WHXB20110626

    28. [28]

      (28) Elola, M. D.; Ladanyi, B. M. J. Chem. Phys. 2006, 125 (18), 184506. doi: 10.1063/1.2364896

    29. [29]

      (29) Zhang, N.; Li, W. Z.; Chen, C.; Zuo, J. G. Acta Phys. -Chim. Sin. 2013, 29 (9), 1891 [张宁, 李维仲, 陈聪, 左建国. 物理化学学报, 2013, 29 (9), 1891.] doi: 10.3866/PKU.WHXB201307121

    30. [30]

      (30) Tu, Y. S.; Lu, H. J.; Zhang, Y. Z.; Huynh, T.; Zhou, R. H. J. Chem. Phys. 2013, 138 (1), 015104. doi: 10.1063/1.4773221

    31. [31]

      (31) Hummer, G.; Rasaiah, J. C.; Noworyta, J. P. Nature 2001, 414 (6860), 188. doi: 10.1038/35102535

    32. [32]

      (32) Shao, Q.; Zhou, J.; Lu, L. H.; Lu, X. H.; Zhu, Y. D.; Jiang, S. Y. Nano Lett. 2009, 9, 989. doi: 10.1021/nl803044k

    33. [33]

      (33) Corry, B. J. Phys. Chem. B 2008, 112 (5), 1427. doi: 10.1021/jp709845u

    34. [34]

      (34) Cohen-Tanugi, D.; Grossman, J. C. Nano Lett. 2012, 12 (7), 3602. doi: 10.1021/nl3012853

    35. [35]

      (35) Hilder, T. A.; rdon, D.; Chung, S. H. Small 2009, 5 (19), 2183. doi: 10.1002/smll.v5:19

    36. [36]

      (36) Corry, B. Energy Environ. Sci. 2011, 4 (3), 751. doi: 10.1039/c0ee00481b

    37. [37]

      (37) Jia, Y. X.; Chen, L. J.; Li, Y.; Hu, Y. D. J. Chem Eng. Chin. Univ. 2014, 28 (4), 707. [贾玉香, 陈立军, 李燕, 胡仰栋. 高校化学工程学报, 2014, 28 (4), 707.]

    38. [38]

      (38) Humplik, T.; Lee, J.; O'Hern, S. C.; Fellman, B. A.; Baig, M. A.; Hassan, S. F.; Atieh, M. A.; Rahman, F.; Laoui, T.; Karnik, R.; Wang, E. N. Nanotechnology 2011, 22 (29), 292001. doi: 10.1088/0957-4484/22/29/292001

    39. [39]

      (39) Ho, T. A.; Striolo, A. Mol. Simul. 2014, 40 (14), 1190. doi: 10.1080/08927022.2013.854893

    40. [40]

      (40) ng, X. J.; Li, J. Y.; Lu, H. J.; Wan, R. Z.; Li, J. C.; Hu, J.; Fang, H. P. Nat. Nanotechnol. 2007, 2 (11), 709. doi: 10.1038/nnano.2007.320

    41. [41]

      (41) Zou, J. G.; Ji, B. H.; Feng, X. Q.; Gao, H. J. Small 2006, 2 (11), 1348.

    42. [42]

      (42) Zhu, F. Q.; Schulten, K. Biophys. J. 2003, 85, 236. doi: 10.1016/ S0006-3495(03)74469-5

    43. [43]

      (43) Kirkwood, J. G. J. Chem. Phys. 1935, 3 (5), 300. doi: 10.1063/1.1749657

    44. [44]

      (44) Zuo, J. C. Physical Mechanics Research on the Transport Properties of ConfinedWater Molecules at Nanoscale. Ph. D. Dissertation, Nanjing University of Aeronautics and Astronautics, Nanjing, 2012. [左广超. 纳米受限环境中水分子输运的物理力学研究[D]. 南京: 南京航空航天大学, 2012.]

    45. [45]

      (45) Chen, C. Theoretical Analysis of Intracellular Ice Growth and Molecular Dynamics Simulation of Hydrogen Bonding Characteristics of Cryoprotective Agent Solutions. Ph. D. Dissertation, Dalian University of Technology, Dalian, 2009. [陈聪. 胞内冰生长的理论分析及保护剂溶液氢键特性的 MD 模拟[D]. 大连: 大连理工大学, 2009.]

    46. [46]

      (46) Song, X. Z.; Fan, J. F.; Liu, D.; Li, H.; Li, R. J. Mol. Model. 2013, 19 (10), 4271. doi: 10.1007/s00894-013-1899-4


  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    4. [4]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    5. [5]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    6. [6]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    7. [7]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    8. [8]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    9. [9]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    10. [10]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    11. [11]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    12. [12]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    13. [13]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    14. [14]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    15. [15]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    16. [16]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    17. [17]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    18. [18]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    19. [19]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    20. [20]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

Metrics
  • PDF Downloads(444)
  • Abstract views(995)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return