Citation: WANG Wei-Gang, LI Kun, ZHOU Li, GE Mao-Fa, HOU Si-Qi, TONG Sheng-Rui, MU Yu-Jing, JIA Long. Evaluation and Application of Dual-Reactor Chamber for Studying Atmospheric Oxidation Processes and Mechanisms[J]. Acta Physico-Chimica Sinica, ;2015, 31(7): 1251-1259. doi: 10.3866/PKU.WHXB201504161
-
A new smog chamber with dual reactors was designed and constructed to study atmospheric oxidation processes that may form ozone or secondary organic aerosols (SOAs). The chamber consists of two 5 m3 fluorinated ethylene propylene (FEP) Teflon-film reactors housed in a thermally isolated enclosure, in which the temperature can be well controlled in the range of -10 to 40 ℃. The influence of the light source on the gasphase oxidation mechanism of propene was investigated. The results showed that multiple ultraviolet (UV) light sources were better than traditional narrow-band black-lamp light sources. Preliminary experiments on propene and m-xylene photo-oxidation processes were performed. The results showed that the dual-reactor chamber can simulate the gas-phase oxidation processes that form ozone or SOAs, and can be used to determine the effects of various species by comparing experiments performed using different initial concentrations. The SOA yield data from m-xylene photo-oxidation under different NOx conditions were in od agreement with those from previous studies. This proves that the chamber can simulate gas-to-particle conversion processes. The dual reactors have the advantage of enabling experiments to be performed with only one key parameter being changed. This will help us to further understand the role of key factors in complex atmospheric pollution processes.
-
-
[1]
(1) Carter, W. P. L.; Cocker, D. R.; Fitz, D. R.; Malkina, I. L.; Bumiller, K.; Sauer, C. G.; Pisano, J. T.; Bufalino, C.; Song, C. Atmos. Environ. 2005, 39, 7768. doi: 10.1016/j. atmosenv.2005.08.040
-
[2]
(2) Cocker, D. R.; Flagan, R. C.; Seinfeld, J. H. Environ. Sci. Technol. 2001, 35, 2594. doi: 10.1021/es0019169
-
[3]
(3) Hamilton, J. F.; Alfarra, M. R.; Wyche, K. P.; Ward, M.W.; Lewis, A. C.; McFiggans, G. B.; od, N.; Monks, P. S.; Carr, T.; White, I. R.; Purvis, R. M. Atmos. Chem. Phys. 2011, 11, 5917. doi: 10.5194/acp-11-5917-2011
-
[4]
(4) Hildebrandt, L.; Donahue, N. M.; Pandis, S. N. Atmos. Chem. Phys. 2009, 9, 2973. doi: 10.5194/acp-9-2973-2009
-
[5]
(5) Hynes, R.; An ve, D.; Saunders, S.; Haverd, V.; Azzi, M. Atmos. Environ. 2005, 39, 7251. doi: 10.1016/j.atmosenv.2005.09.005
-
[6]
(6) Jang, M. S.; Kamens, R. M. Environ. Sci. Technol. 2001, 35, 3626. doi: 10.1021/es010676+
-
[7]
(7) Johnson, D.; Jenkin, M. E.; Wirtz, K.; Martin-Reviejo, M. Environ. Chem. 2004, 1, 150. doi: 10.1071/EN04069
-
[8]
(8) Kleindienst, T. E.; Smith, D. F.; Li, W.; Edney, E. O.; Driscoll, D. J.; Speer, R. E.; Weathers, W. S. Atmos. Environ. 1999, 33, 3669. doi: 10.1016/S1352-2310(99)00121-1
-
[9]
(9) Martin-Reviejo, M.; Wirtz, K. Environ. Sci. Technol. 2005, 39, 1045. doi: 10.1021/es049802a
-
[10]
(10) Odum, J. R.; Jungkamp, T. P.W.; Griffin, R. J.; Flagan, R. C.; Seinfeld, J. H. Science 1997, 276, 96. doi: 10.1126/science.276.5309.96
-
[11]
(11) Paulsen, D.; Dommen, J.; Kalberer, M.; Prevot, A. S. H.; Richter, R.; Sax, M.; Steinbacher, M.; Weingartner, E.; Baltensperger, U. Environ. Sci. Technol. 2005, 39, 2668. doi: 10.1021/es0489137
-
[12]
(12) Wang, J.; Doussin, J. F.; Perrier, S.; Perraudin, E.; Katrib, Y.; Pangui, E.; Picquet-Varrault, B. Atmos. Meas. Tech. 2011, 4, 2465. doi: 10.5194/amt-4-2465-2011
-
[13]
(13) Chandramouli, B.; Jang, M. S.; Kamens, R. M. Environ. Sci. Technol. 2003, 37, 4113. doi: 10.1021/es026287c
-
[14]
(14) Lee, S. B.; Bae, G. N.; Lee, Y. M.; Moon, K. C.; Choi, M. Aerosol Air Qual. Res. 2010, 10, 540.
-
[15]
(15) Wang, X.; Liu, T.; Bernard, F.; Ding, X.; Wen, S.; Zhang, Y.; Zhang, Z.; He, Q.; Lu, S.; Chen, J.; Saunders, S.; Yu, J. Atmos. Meas. Tech. 2014, 7, 301. doi: 10.5194/amt-7-301-2014
-
[16]
(16) Wu, S.; Lu, Z.; Hao, J.; Zhao, Z.; Li, J.; Takekawa, H.; Minoura, H.; Yasuda, A. Adv. Atmos. Sci. 2007, 24, 250. doi: 10.1007/s00376-007-0250-3
-
[17]
(17) Xu, Y.; Jia, L.; Ge, M.; Du, L.; Wang, G.; Wang, D. Chin. Sci. Bull. 2006, 51, 2839. doi: 10.1007/s11434-006-2180-3
-
[18]
(18) Jia, L.; Xu, Y. F. Aerosol Sci. Tech. 2014, 48 (1), 1. doi: 10.1080/02786826.2013.847269
-
[19]
(19) Jia, L.; Xu, Y. F.; Shi, Y. Z. Chin. Sci. Bull. 2012, 57, 4472. doi: 10.1007/s11434-012-5375-9
-
[20]
(20) Gai, Y.; Ge, M.; Wang, W. Atmos. Environ. 2009, 43, 3467. doi: 10.1016/j.atmosenv.2009.04.038
-
[21]
(21) Wang, K.; Ge, M.; Wang, W. Atmos. Environ. 2010, 44, 1847. doi: 10.1016/j.atmosenv.2010.02.039
-
[22]
(22) Gai, Y.; Ge, M.; Wang, W. Atmos. Environ. 2011, 45, 53. doi: 10.1016/j.atmosenv.2010.09.047
-
[23]
(23) Gai, Y.; Wang, W.; Ge, M.; Kjaergaard, H. G.; Jørgensen, S.; Du, L. Atmos. Environ. 2013, 77, 696. doi: 10.1016/j.atmosenv.2013.05.041
-
[24]
(24) Li, K.; Wang, W.; Ge, M.; Li, J.; Wang, D. Sci. Rep. 2014, 4, 4922.
-
[25]
(25) Liu, Z.; Ge, M.; Wang, W.; Yin, S.; Tong, S. Phys. Chem. Chem. Phys. 2011, 13, 2069. doi: 10.1039/c0cp00905a
-
[26]
(26) Wang, T. H.; Liu, Z.; Wang, W. G.; Ge, M. F. Acta Phys. -Chim. Sin. 2012, 28, 1608. [王天鹤, 刘泽, 王炜罡, 葛茂发. 物理化学学报, 2012, 28, 1608.] doi: 10.3866/PKU.WHXB201204241
-
[27]
(27) Wang, L.; Wang, W.; Ge, M. Chin. Sci. Bull. 2012, 57, 2567. doi: 10.1007/s11434-012-5146-7
-
[28]
(28) Shi, Y.; Ge, M.; Wang, W. Atmos. Environ. 2012, 60, 9. doi: 10.1016/j.atmosenv.2012.06.034
-
[29]
(29) Cappa, C. D.; Onasch, T. B.; Massoli, P.; Worsnop, D. R.; Bates, T. S.; Cross, E. S.; Davidovits, P.; Hakala, J.; Hayden, K. L.; Jobson, B. T.; Kolesar, K. R.; Lack, D. A.; Lerner, B. M.; Li, S. M.; Mellon, D.; Nuaaman, I.; Olfert, J. S.; Petaja, T.; Quinn, P. K.; Song, C.; Subramanian, R.; Williams, E. J.; Zaveri, R. A. Science 2012, 337, 1078. doi: 10.1126/science.1223447
-
[30]
(30) Symonds, J. P. R.; Reavell, K. S. J.; Olfert, J. S. Aerosol Sci. Tech. 2013, 47 (8), 1.
-
[31]
(31) Metzger, A.; Dommen, J.; Gaeggeler, K.; Duplissy, J.; Prevot, A. S. H.; Kleffmann, J.; Elshorbany, Y.; Wisthaler, A.; Baltensperger, U. Atmos. Chem. Phys. 2008, 8, 6453. doi: 10.5194/acp-8-6453-2008
-
[32]
(32) Grosjean, D. Environ. Sci. Technol. 1985, 19, 1059. doi: 10.1021/es00141a006
-
[33]
(33) Keywood, M. D.; Varutbangkul, V.; Bahreini, R.; Flagan, R. C.; Seinfeld, J. H. Environ. Sci. Technol. 2004, 38, 4157. doi: 10.1021/es035363o
-
[34]
(34) McMurry, P. H.; Grosjean, D. Environ. Sci. Technol. 1985, 19, 1176. doi: 10.1021/es00142a006
-
[35]
(35) McMurry, P. H.; Rader, D. J. Aerosol Sci. Tech. 1985, 4, 249. doi: 10.1080/02786828508959054
-
[36]
(36) Saunders, S. M.; Jenkin, M. E.; Derwent, R. G.; Pilling, M. J. Atmos. Chem. Phys. 2003, 3, 161. doi: 10.5194/acp-3-161-2003
-
[37]
(37) Hu, G. S.; Xu, Y. F.; Jia, L. Acta Chim. Sin. 2011, 69, 1593. [胡高硕, 徐永福, 贾龙. 化学学报, 2011, 69, 1593.]
-
[38]
(38) Odum, J. R.; Hoffmann, T.; Bowman, F.; Collins, D.; Flagan, R. C.; Seinfeld, J. H. Environ. Sci. Technol. 1996, 30, 2580. doi: 10.1021/es950943+
-
[39]
(39) Song, C.; Na, K. S.; Cocker, D. R. Environ. Sci. Technol. 2005, 39, 3143. doi: 10.1021/es0493244
-
[40]
(40) Ng, N. L.; Kroll, J. H.; Chan, A.W. H.; Chhabra, P. S.; Flagan, R. C.; Seinfeld, J. H. Atmos. Chem. Phys. 2007, 7, 3909. doi: 10.5194/acp-7-3909-2007
-
[41]
(41) Takekawa, H.; Minoura, H.; Yamazaki, S. Atmos. Environ. 2003, 37, 3413. doi: 10.1016/S1352-2310(03)00359-5
-
[42]
(42) Svendby, T. M.; Lazaridis, M.; Tørseth, K. J. Atmos. Chem. 2008, 59, 25. doi: 10.1007/s10874-007-9093-7
-
[43]
(43) Koch, R.; Knispel, R.; Elend, M.; Siese, M.; Zetzsch, C. Atmos. Chem. Phys. 2007, 7, 2057. doi: 10.5194/acp-7-2057-2007
-
[44]
(44) Volkamer, R.; Klotz, B.; Barnes, I.; Imamura, T.; Wirtz, K.; Washida, N.; Becker, K. H.; Platt, U. Phys. Chem. Chem. Phys. 2002, 4, 1598. doi: 10.1039/b108747a
-
[45]
(45) Pan, S.; Wang, L. J. Phys. Chem. A 2014, 118, 10778. doi: 10.1021/jp506815v
-
[46]
(46) Kroll, J. H.; Chan, A.W. H.; Ng, N. L.; Flagan, R. C.; Seinfeld, J. H. Environ. Sci. Technol. 2007, 41, 3545. doi: 10.1021/es062059x
-
[1]
-
-
[1]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[2]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[3]
Houjin Li , Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016
-
[4]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[5]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[6]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[7]
Daojuan Cheng , Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105
-
[8]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[9]
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
-
[10]
Ling Zhang , Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075
-
[11]
Jingjing QING , Fan HE , Zhihui LIU , Shuaipeng HOU , Ya LIU , Yifan JIANG , Mengting TAN , Lifang HE , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003
-
[12]
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
-
[13]
Yihao Zhao , Jitian Rao , Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050
-
[14]
Yinwu Su , Xuanwen Zheng , Jianghui Du , Boda Li , Tao Wang , Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092
-
[15]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[16]
Shasha Ma , Zujin Yang , Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008
-
[17]
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
-
[18]
Fuxian Wan , Ying Li , Yuanhong Zhang , Shuhua Zhu , Jing Xu , Yanfang Wang , Lili Zhang . Exploration and Practice of Teaching in Agricultural Characteristic Organic Chemistry Course. University Chemistry, 2024, 39(2): 298-306. doi: 10.3866/PKU.DXHX202308041
-
[19]
Zhichang Xiao , Xiaohui Li , Ling Zhang , Huimin Liu . Exploration of Ideological and Political Construction in University Foundation Course of Organic Chemistry. University Chemistry, 2024, 39(2): 314-320. doi: 10.3866/PKU.DXHX202308058
-
[20]
Gang Liu , Heng Zhang , Ying Ma , Shiling Yuan , Qisheng Song , Zhenghu Xu , Jichao Sun . Exploration and Practice on Improving the Teaching Quality of Organic Chemistry Laboratory Course. University Chemistry, 2024, 39(4): 70-74. doi: 10.3866/PKU.DXHX202309079
-
[1]
Metrics
- PDF Downloads(327)
- Abstract views(633)
- HTML views(7)