Citation: WANG Wei-Gang, LI Kun, ZHOU Li, GE Mao-Fa, HOU Si-Qi, TONG Sheng-Rui, MU Yu-Jing, JIA Long. Evaluation and Application of Dual-Reactor Chamber for Studying Atmospheric Oxidation Processes and Mechanisms[J]. Acta Physico-Chimica Sinica, ;2015, 31(7): 1251-1259. doi: 10.3866/PKU.WHXB201504161 shu

Evaluation and Application of Dual-Reactor Chamber for Studying Atmospheric Oxidation Processes and Mechanisms

  • Received Date: 29 December 2014
    Available Online: 16 April 2015

    Fund Project: 中国科学院战略先导B项目(XDB05010400) (XDB05010400) 国家重点基础研究发展规划项目(973) (2011CB403401) (973) (2011CB403401)国家自然科学基金(21190052,41173112, 41227805)资助 (21190052,41173112, 41227805)

  • A new smog chamber with dual reactors was designed and constructed to study atmospheric oxidation processes that may form ozone or secondary organic aerosols (SOAs). The chamber consists of two 5 m3 fluorinated ethylene propylene (FEP) Teflon-film reactors housed in a thermally isolated enclosure, in which the temperature can be well controlled in the range of -10 to 40 ℃. The influence of the light source on the gasphase oxidation mechanism of propene was investigated. The results showed that multiple ultraviolet (UV) light sources were better than traditional narrow-band black-lamp light sources. Preliminary experiments on propene and m-xylene photo-oxidation processes were performed. The results showed that the dual-reactor chamber can simulate the gas-phase oxidation processes that form ozone or SOAs, and can be used to determine the effects of various species by comparing experiments performed using different initial concentrations. The SOA yield data from m-xylene photo-oxidation under different NOx conditions were in od agreement with those from previous studies. This proves that the chamber can simulate gas-to-particle conversion processes. The dual reactors have the advantage of enabling experiments to be performed with only one key parameter being changed. This will help us to further understand the role of key factors in complex atmospheric pollution processes.

  • 加载中
    1. [1]

      (1) Carter, W. P. L.; Cocker, D. R.; Fitz, D. R.; Malkina, I. L.; Bumiller, K.; Sauer, C. G.; Pisano, J. T.; Bufalino, C.; Song, C. Atmos. Environ. 2005, 39, 7768. doi: 10.1016/j. atmosenv.2005.08.040

    2. [2]

      (2) Cocker, D. R.; Flagan, R. C.; Seinfeld, J. H. Environ. Sci. Technol. 2001, 35, 2594. doi: 10.1021/es0019169

    3. [3]

      (3) Hamilton, J. F.; Alfarra, M. R.; Wyche, K. P.; Ward, M.W.; Lewis, A. C.; McFiggans, G. B.; od, N.; Monks, P. S.; Carr, T.; White, I. R.; Purvis, R. M. Atmos. Chem. Phys. 2011, 11, 5917. doi: 10.5194/acp-11-5917-2011

    4. [4]

      (4) Hildebrandt, L.; Donahue, N. M.; Pandis, S. N. Atmos. Chem. Phys. 2009, 9, 2973. doi: 10.5194/acp-9-2973-2009

    5. [5]

      (5) Hynes, R.; An ve, D.; Saunders, S.; Haverd, V.; Azzi, M. Atmos. Environ. 2005, 39, 7251. doi: 10.1016/j.atmosenv.2005.09.005

    6. [6]

      (6) Jang, M. S.; Kamens, R. M. Environ. Sci. Technol. 2001, 35, 3626. doi: 10.1021/es010676+

    7. [7]

      (7) Johnson, D.; Jenkin, M. E.; Wirtz, K.; Martin-Reviejo, M. Environ. Chem. 2004, 1, 150. doi: 10.1071/EN04069

    8. [8]

      (8) Kleindienst, T. E.; Smith, D. F.; Li, W.; Edney, E. O.; Driscoll, D. J.; Speer, R. E.; Weathers, W. S. Atmos. Environ. 1999, 33, 3669. doi: 10.1016/S1352-2310(99)00121-1

    9. [9]

      (9) Martin-Reviejo, M.; Wirtz, K. Environ. Sci. Technol. 2005, 39, 1045. doi: 10.1021/es049802a

    10. [10]

      (10) Odum, J. R.; Jungkamp, T. P.W.; Griffin, R. J.; Flagan, R. C.; Seinfeld, J. H. Science 1997, 276, 96. doi: 10.1126/science.276.5309.96

    11. [11]

      (11) Paulsen, D.; Dommen, J.; Kalberer, M.; Prevot, A. S. H.; Richter, R.; Sax, M.; Steinbacher, M.; Weingartner, E.; Baltensperger, U. Environ. Sci. Technol. 2005, 39, 2668. doi: 10.1021/es0489137

    12. [12]

      (12) Wang, J.; Doussin, J. F.; Perrier, S.; Perraudin, E.; Katrib, Y.; Pangui, E.; Picquet-Varrault, B. Atmos. Meas. Tech. 2011, 4, 2465. doi: 10.5194/amt-4-2465-2011

    13. [13]

      (13) Chandramouli, B.; Jang, M. S.; Kamens, R. M. Environ. Sci. Technol. 2003, 37, 4113. doi: 10.1021/es026287c

    14. [14]

      (14) Lee, S. B.; Bae, G. N.; Lee, Y. M.; Moon, K. C.; Choi, M. Aerosol Air Qual. Res. 2010, 10, 540.

    15. [15]

      (15) Wang, X.; Liu, T.; Bernard, F.; Ding, X.; Wen, S.; Zhang, Y.; Zhang, Z.; He, Q.; Lu, S.; Chen, J.; Saunders, S.; Yu, J. Atmos. Meas. Tech. 2014, 7, 301. doi: 10.5194/amt-7-301-2014

    16. [16]

      (16) Wu, S.; Lu, Z.; Hao, J.; Zhao, Z.; Li, J.; Takekawa, H.; Minoura, H.; Yasuda, A. Adv. Atmos. Sci. 2007, 24, 250. doi: 10.1007/s00376-007-0250-3

    17. [17]

      (17) Xu, Y.; Jia, L.; Ge, M.; Du, L.; Wang, G.; Wang, D. Chin. Sci. Bull. 2006, 51, 2839. doi: 10.1007/s11434-006-2180-3

    18. [18]

      (18) Jia, L.; Xu, Y. F. Aerosol Sci. Tech. 2014, 48 (1), 1. doi: 10.1080/02786826.2013.847269

    19. [19]

      (19) Jia, L.; Xu, Y. F.; Shi, Y. Z. Chin. Sci. Bull. 2012, 57, 4472. doi: 10.1007/s11434-012-5375-9

    20. [20]

      (20) Gai, Y.; Ge, M.; Wang, W. Atmos. Environ. 2009, 43, 3467. doi: 10.1016/j.atmosenv.2009.04.038

    21. [21]

      (21) Wang, K.; Ge, M.; Wang, W. Atmos. Environ. 2010, 44, 1847. doi: 10.1016/j.atmosenv.2010.02.039

    22. [22]

      (22) Gai, Y.; Ge, M.; Wang, W. Atmos. Environ. 2011, 45, 53. doi: 10.1016/j.atmosenv.2010.09.047

    23. [23]

      (23) Gai, Y.; Wang, W.; Ge, M.; Kjaergaard, H. G.; Jørgensen, S.; Du, L. Atmos. Environ. 2013, 77, 696. doi: 10.1016/j.atmosenv.2013.05.041

    24. [24]

      (24) Li, K.; Wang, W.; Ge, M.; Li, J.; Wang, D. Sci. Rep. 2014, 4, 4922.

    25. [25]

      (25) Liu, Z.; Ge, M.; Wang, W.; Yin, S.; Tong, S. Phys. Chem. Chem. Phys. 2011, 13, 2069. doi: 10.1039/c0cp00905a

    26. [26]

      (26) Wang, T. H.; Liu, Z.; Wang, W. G.; Ge, M. F. Acta Phys. -Chim. Sin. 2012, 28, 1608. [王天鹤, 刘泽, 王炜罡, 葛茂发. 物理化学学报, 2012, 28, 1608.] doi: 10.3866/PKU.WHXB201204241

    27. [27]

      (27) Wang, L.; Wang, W.; Ge, M. Chin. Sci. Bull. 2012, 57, 2567. doi: 10.1007/s11434-012-5146-7

    28. [28]

      (28) Shi, Y.; Ge, M.; Wang, W. Atmos. Environ. 2012, 60, 9. doi: 10.1016/j.atmosenv.2012.06.034

    29. [29]

      (29) Cappa, C. D.; Onasch, T. B.; Massoli, P.; Worsnop, D. R.; Bates, T. S.; Cross, E. S.; Davidovits, P.; Hakala, J.; Hayden, K. L.; Jobson, B. T.; Kolesar, K. R.; Lack, D. A.; Lerner, B. M.; Li, S. M.; Mellon, D.; Nuaaman, I.; Olfert, J. S.; Petaja, T.; Quinn, P. K.; Song, C.; Subramanian, R.; Williams, E. J.; Zaveri, R. A. Science 2012, 337, 1078. doi: 10.1126/science.1223447

    30. [30]

      (30) Symonds, J. P. R.; Reavell, K. S. J.; Olfert, J. S. Aerosol Sci. Tech. 2013, 47 (8), 1.

    31. [31]

      (31) Metzger, A.; Dommen, J.; Gaeggeler, K.; Duplissy, J.; Prevot, A. S. H.; Kleffmann, J.; Elshorbany, Y.; Wisthaler, A.; Baltensperger, U. Atmos. Chem. Phys. 2008, 8, 6453. doi: 10.5194/acp-8-6453-2008

    32. [32]

      (32) Grosjean, D. Environ. Sci. Technol. 1985, 19, 1059. doi: 10.1021/es00141a006

    33. [33]

      (33) Keywood, M. D.; Varutbangkul, V.; Bahreini, R.; Flagan, R. C.; Seinfeld, J. H. Environ. Sci. Technol. 2004, 38, 4157. doi: 10.1021/es035363o

    34. [34]

      (34) McMurry, P. H.; Grosjean, D. Environ. Sci. Technol. 1985, 19, 1176. doi: 10.1021/es00142a006

    35. [35]

      (35) McMurry, P. H.; Rader, D. J. Aerosol Sci. Tech. 1985, 4, 249. doi: 10.1080/02786828508959054

    36. [36]

      (36) Saunders, S. M.; Jenkin, M. E.; Derwent, R. G.; Pilling, M. J. Atmos. Chem. Phys. 2003, 3, 161. doi: 10.5194/acp-3-161-2003

    37. [37]

      (37) Hu, G. S.; Xu, Y. F.; Jia, L. Acta Chim. Sin. 2011, 69, 1593. [胡高硕, 徐永福, 贾龙. 化学学报, 2011, 69, 1593.]

    38. [38]

      (38) Odum, J. R.; Hoffmann, T.; Bowman, F.; Collins, D.; Flagan, R. C.; Seinfeld, J. H. Environ. Sci. Technol. 1996, 30, 2580. doi: 10.1021/es950943+

    39. [39]

      (39) Song, C.; Na, K. S.; Cocker, D. R. Environ. Sci. Technol. 2005, 39, 3143. doi: 10.1021/es0493244

    40. [40]

      (40) Ng, N. L.; Kroll, J. H.; Chan, A.W. H.; Chhabra, P. S.; Flagan, R. C.; Seinfeld, J. H. Atmos. Chem. Phys. 2007, 7, 3909. doi: 10.5194/acp-7-3909-2007

    41. [41]

      (41) Takekawa, H.; Minoura, H.; Yamazaki, S. Atmos. Environ. 2003, 37, 3413. doi: 10.1016/S1352-2310(03)00359-5

    42. [42]

      (42) Svendby, T. M.; Lazaridis, M.; Tørseth, K. J. Atmos. Chem. 2008, 59, 25. doi: 10.1007/s10874-007-9093-7

    43. [43]

      (43) Koch, R.; Knispel, R.; Elend, M.; Siese, M.; Zetzsch, C. Atmos. Chem. Phys. 2007, 7, 2057. doi: 10.5194/acp-7-2057-2007

    44. [44]

      (44) Volkamer, R.; Klotz, B.; Barnes, I.; Imamura, T.; Wirtz, K.; Washida, N.; Becker, K. H.; Platt, U. Phys. Chem. Chem. Phys. 2002, 4, 1598. doi: 10.1039/b108747a

    45. [45]

      (45) Pan, S.; Wang, L. J. Phys. Chem. A 2014, 118, 10778. doi: 10.1021/jp506815v

    46. [46]

      (46) Kroll, J. H.; Chan, A.W. H.; Ng, N. L.; Flagan, R. C.; Seinfeld, J. H. Environ. Sci. Technol. 2007, 41, 3545. doi: 10.1021/es062059x


  • 加载中
    1. [1]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    2. [2]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    3. [3]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

    4. [4]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    5. [5]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    6. [6]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    7. [7]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    10. [10]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

    11. [11]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    14. [14]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    15. [15]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    16. [16]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    17. [17]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    18. [18]

      Fuxian Wan Ying Li Yuanhong Zhang Shuhua Zhu Jing Xu Yanfang Wang Lili Zhang . Exploration and Practice of Teaching in Agricultural Characteristic Organic Chemistry Course. University Chemistry, 2024, 39(2): 298-306. doi: 10.3866/PKU.DXHX202308041

    19. [19]

      Zhichang Xiao Xiaohui Li Ling Zhang Huimin Liu . Exploration of Ideological and Political Construction in University Foundation Course of Organic Chemistry. University Chemistry, 2024, 39(2): 314-320. doi: 10.3866/PKU.DXHX202308058

    20. [20]

      Gang Liu Heng Zhang Ying Ma Shiling Yuan Qisheng Song Zhenghu Xu Jichao Sun . Exploration and Practice on Improving the Teaching Quality of Organic Chemistry Laboratory Course. University Chemistry, 2024, 39(4): 70-74. doi: 10.3866/PKU.DXHX202309079

Metrics
  • PDF Downloads(327)
  • Abstract views(632)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return