Citation: XIE Xing-Xing, FEI Zhao-Yang, ZOU Chong, LI Zheng-Zhou, CHEN Xian, TANG Ji-Hai, CUI Mi-Fen, QIAO Xu. Effects of Rare-Earth Additives on Structures and Performances of CuO-CeO2-SiO2 Catalysts for Recycling Cl2 from HCl Oxidation[J]. Acta Physico-Chimica Sinica, ;2015, 31(6): 1153-1161. doi: 10.3866/PKU.WHXB201504145 shu

Effects of Rare-Earth Additives on Structures and Performances of CuO-CeO2-SiO2 Catalysts for Recycling Cl2 from HCl Oxidation

  • Received Date: 23 December 2014
    Available Online: 14 April 2015

    Fund Project: 国家科技支撑计划(2011BAE18B01) (2011BAE18B01) 江苏省科技支撑计划(BE2011830) (BE2011830) 江苏省高校自然科学基金面上项目(13KJB530006) (13KJB530006) 国家自然科学基金(21306089) (21306089)中国博士后基金(2013M531340)资助 (2013M531340)

  • CuO-CeO2-SiO2 and rare-earth-doped CuO-Ce0.9M0.1O2-SiO2 (M=La, Pr, Nd) catalysts for recycling Cl2 from HCl oxidation were prepared by a template method, using activated carbon as a hard template. The catalyst structures were determined using X-ray diffraction (XRD), N2 adsorption-desorption, transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and H2 temperatureprogrammed reduction (H2-TPR). The catalytic performances were also investigated. The results showed that La, Pr, and Nd cations were incorporated into the CeO2 lattice and formed nanosized solid solutions; this greatly reduced the catalyst grain sizes, leading to higher surface areas. In addition, the oxygen vacancy concentrations were significantly improved. The changes in the structures and surface properties of the solid solutions significantly affected the HCl catalytic oxidation performances. The order of the activities of various catalysts was CuO-Ce0.9La0.1O2-SiO2>CuO-Ce0.9Nd0.1O2-SiO2>CuO-Ce0.9Pr0.1O2-SiO2>CuO-CeO2-SiO2. The oxygen vacancy concentrations of the solid solutions were strongly related to their catalytic activities. However, the structures and performances of the Ce0.9M0.1O2-SiO2 catalysts showed that an increase in the number of oxygen vacancies resulted in decreased catalytic activities of the solid solutions. Kinetic studies showed that oxygen adsorption could be the rate-determining step for rare-earth-doped catalysts; a higher oxygen vacancy concentration in the solid solution led to a slower reaction rate when the volumetric flow ratio of O2 to HCl was 1. For the CuOCe0.9M0.1O2-SiO2 catalysts, spillover of oxygen species in the solid solution into the highly dispersed CuO interfaces was enhanced, which increased the overall reaction rate and gave high activity.

  • 加载中
    1. [1]

      (1) Pérez-Ramírez, J.; Mondelli, C.; Schmidt, T.; Schlüter, O. F. K.; Wolf, A.; Mleczko, L.; Dreier, T. Energy Environ. Sci. 2011, 4, 4786. doi: 10.1039/c1ee02190g

    2. [2]

      (2) Deacon, H. Manufacture of Chlorine. U. S. Pat. 85370A, 1868.

    3. [3]

      (3) Crihan, D.; Knapp, M.; Zweidinger, S.; Lundgren, E.; Weststrate, C. J.; Andersen, J. N.; Seitsonen A. P.; Over, H. Angew. Chem. Int. Edit. 2008, 47, 2131.

    4. [4]

      (4) Tang, J. H.; Chen, X.; Fei, Z. Y.; Zhao, J. H.; Cui, M. F.; Qiao, X. Ind. Eng. Chem. Res. 2013, 52, 11897. doi: 10.1021/ie400200g

    5. [5]

      (5) Seki, K. Catal. Surv. Asia 2010, 14, 168. doi: 10.1007/s10563-010-9091-7

    6. [6]

      (6) Mondelli, C.; Amrute, A. P.; Krumeich, F.; Schmidit, T.; Pérez- Ramírez, J. ChemCatChem 2011, 3, 657. doi: 10.1002/cctc.201000424

    7. [7]

      (7) Mondelli, C.; Amrute, A. P.; Schmidt, T.; Pérez-Ramírez, J. Chem. Commun. 2011, 47, 7173.

    8. [8]

      (8) Hernandez, W. Y.; Laguna, O. H.; Centeno, M. A.; Odriozola, J. A. J. Solid State Chem. 2011, 184, 3014. doi: 10.1016/j.jssc.2011.09.018

    9. [9]

      (9) Cao, H. Y.; Wang, J. L.; Yan, S. H.; Liu, Z. M.; ng, M. C.; Chen, Y. Q. Acta. Phys. -Chim. Sin. 2012, 28 (8), 1936. [曹红岩, 王健礼, 闫生辉, 刘志敏, 龚茂初, 陈耀强. 物理化学学报, 2012, 28 (8), 1936.] doi: 10.3866/PKU.WHXB201205173

    10. [10]

      (10) Wang, S. Y.; Li, N.; Luo, L. F.; Huang, W. X.; Pu, Z. Y.; Wang, J.W.; Hu, G. S.; Luo, M. F.; Lu, J. Q. Appl. Catal. B: Environ. 2014, 144, 325.

    11. [11]

      (11) Amrute, A. P.; Mondelli, C.; Moser, M.; Novell-Leruth, G.; López, N.; Rosenthal, D.; Farra, R.; Schüster, M. E.; Teschner, D.; Schmidt, T.; Pérez-Ramírez, J. J. Catal. 2012, 286, 287. doi: 10.1016/j.jcat.2011.11.016

    12. [12]

      (12) Moser, M.; Mondelli, C.; Schmidt, T.; Girgsdies, F.; Schüster, M. E.; Farra, R.; Szentmiklósi, L.; Teschner, D.; P rez-Ramírez, J. Appl. Catal. B: Environ. 2013, 132-133, 123.

    13. [13]

      (13) Amrute, A. P.; Larrazábal, G. O.; Mondelli, C.; Pérez Ramírez, J. Angew. Chem. Int. Edit. 2013, 52, 9772. doi: 10.1002/ange.201304254

    14. [14]

      (14) Chen, X.; Lü, G. M.; Tang, J. H.; Cui, M. F.; Zhou, Z.; Cao, R.; Qiao, X. J. Chem. Eng. Chin. Univ. 2011, 25, 109. [陈献, 吕高明, 汤吉海, 崔咪芬, 周哲, 曹锐, 乔旭. 高校化学工程学报, 2011, 25, 109.]

    15. [15]

      (15) Fei, Z. Y.; Liu, H. Y.; Dai, Y.; Ji, W. J.; Chen, X.; Tang, J. H.; Cui, M. F.; Qiao, X. Chem. Eng. J. 2014, 257, 273. doi: 10.1016/j.cej.2014.07.033

    16. [16]

      (16) Jampaiah, D.; Tur, K. M.; Ippolito, S. J.; Sabri, Y. M.; Tardio, J.; Bhargava, S. K.; Reddy, B. M. RSC. Adv. 2013, 3, 12963. doi:10.1039/c3ra41441h

    17. [17]

      (17) Farra, R.; García-Melchor, M.; Eichelbaum, M.; Hashagen, M.; Frandsen, W.; Allan, J.; Girgsdies, F.; Szentmiklósi, L.; López, N.; Teschner, D. ACS Catal. 2013, 3, 2256. doi: 10.1021/cs4005002

    18. [18]

      (18) Jiang, J. T.; Wei, X. J.; Xu, C. Y.; Zhou, Z. X.; Zhen, L. J. Magn. Magn. Mater. 2013, 334, 111. doi: 10.1016/j.jmmm.2012.12.036

    19. [19]

      (19) Hernandez, W. Y.; Laguna, O. H.; Centeno, M. A.; Odriozola, J. A. J. Solid State Chem. 2011, 184, 3014. doi: 10.1016/j.jssc.2011.09.018

    20. [20]

      (20) Si, R.; Zhang, Y.W.; Li, S. J.; Lin, B. X.; Yan, C. H. J. Phys. Chem. B 2004, 33, 12481.

    21. [21]

      (21) Meng, Z. H.; Yang, P.; Zhou, R. X. Acta Phys. -Chim. Sin. 2013, 29 (2), 391. [孟中华, 杨鹏, 周仁贤. 物理化学学报, 2013, 29 (2), 391.] doi: 10.3866/PKU.WHXB201212072

    22. [22]

      (22) Yang, D.; Wang, L.; Sun, Y. Z.; Zhou, K. J. Phys. Chem. C 2010, 114, 8926. doi: 10.1021/jp912227p

    23. [23]

      (23) Liu, L.; Yao, Z.; Deng, Y.; Gao, F.; Liu, B.; Dong, L. ChemCatChem 2011, 3, 978. doi: 10.1002/cctc.v3.6

    24. [24]

      (24) Reddy, B. M.; Saikia, P.; Bharali, P.; Park, S. E.; Muhler, M.; Grüunert, W. J. Phys. Chem. C 2009, 113, 2452. doi: 10.1021/jp809837g

    25. [25]

      (25) Katta, L.; Sudarsanam, P.; Thrimurthulu, G.; Reddy, B. M. Appl. Catal. B: Environ. 2010, 101, 101. doi: 10.1016/j.apcatb.2010.09.012

    26. [26]

      (26) Gao, X.; Du, X. S.; Cui, L.W.; Fu, Y. C.; Luo, Z. Y.; Cen, K. F. Catal. Commun. 2010, 12, 255.

    27. [27]

      (27) Menon, U.; Poelman, H.; Bliznuk, V.; Galvita, V. V.; Poelman, D.; Marin, G. B. J. Catal. 2012, 295, 91. doi: 10.1016/j.jcat.2012.07.026

    28. [28]

      (28) Amrute, A. P.; Mondelli, C.; Miguel, A. G.; Hevia, P. J. J. Phys. Chem. C 2011, 115, 1056.

    29. [29]

      (29) Farra, R.; Wrabetz, S.; Schuster, E. S.; Stotz, E.; Hamilton, N. G.; Amrute, A. P.; Pérez-Ramírez, J.; López, N.; Teschner, D. Phys. Chem. Chem. Phys. 2013, 15, 3454. doi: 10.1039/c2cp42767b


  • 加载中
    1. [1]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    2. [2]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    5. [5]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    6. [6]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    7. [7]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    8. [8]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    9. [9]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    10. [10]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    11. [11]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    14. [14]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    15. [15]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    16. [16]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    17. [17]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    18. [18]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    19. [19]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    20. [20]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

Metrics
  • PDF Downloads(317)
  • Abstract views(802)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return