Citation: XIE Xing-Xing, FEI Zhao-Yang, ZOU Chong, LI Zheng-Zhou, CHEN Xian, TANG Ji-Hai, CUI Mi-Fen, QIAO Xu. Effects of Rare-Earth Additives on Structures and Performances of CuO-CeO2-SiO2 Catalysts for Recycling Cl2 from HCl Oxidation[J]. Acta Physico-Chimica Sinica, ;2015, 31(6): 1153-1161. doi: 10.3866/PKU.WHXB201504145 shu

Effects of Rare-Earth Additives on Structures and Performances of CuO-CeO2-SiO2 Catalysts for Recycling Cl2 from HCl Oxidation

  • Received Date: 23 December 2014
    Available Online: 14 April 2015

    Fund Project: 国家科技支撑计划(2011BAE18B01) (2011BAE18B01) 江苏省科技支撑计划(BE2011830) (BE2011830) 江苏省高校自然科学基金面上项目(13KJB530006) (13KJB530006) 国家自然科学基金(21306089) (21306089)中国博士后基金(2013M531340)资助 (2013M531340)

  • CuO-CeO2-SiO2 and rare-earth-doped CuO-Ce0.9M0.1O2-SiO2 (M=La, Pr, Nd) catalysts for recycling Cl2 from HCl oxidation were prepared by a template method, using activated carbon as a hard template. The catalyst structures were determined using X-ray diffraction (XRD), N2 adsorption-desorption, transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and H2 temperatureprogrammed reduction (H2-TPR). The catalytic performances were also investigated. The results showed that La, Pr, and Nd cations were incorporated into the CeO2 lattice and formed nanosized solid solutions; this greatly reduced the catalyst grain sizes, leading to higher surface areas. In addition, the oxygen vacancy concentrations were significantly improved. The changes in the structures and surface properties of the solid solutions significantly affected the HCl catalytic oxidation performances. The order of the activities of various catalysts was CuO-Ce0.9La0.1O2-SiO2>CuO-Ce0.9Nd0.1O2-SiO2>CuO-Ce0.9Pr0.1O2-SiO2>CuO-CeO2-SiO2. The oxygen vacancy concentrations of the solid solutions were strongly related to their catalytic activities. However, the structures and performances of the Ce0.9M0.1O2-SiO2 catalysts showed that an increase in the number of oxygen vacancies resulted in decreased catalytic activities of the solid solutions. Kinetic studies showed that oxygen adsorption could be the rate-determining step for rare-earth-doped catalysts; a higher oxygen vacancy concentration in the solid solution led to a slower reaction rate when the volumetric flow ratio of O2 to HCl was 1. For the CuOCe0.9M0.1O2-SiO2 catalysts, spillover of oxygen species in the solid solution into the highly dispersed CuO interfaces was enhanced, which increased the overall reaction rate and gave high activity.

  • 加载中
    1. [1]

      (1) Pérez-Ramírez, J.; Mondelli, C.; Schmidt, T.; Schlüter, O. F. K.; Wolf, A.; Mleczko, L.; Dreier, T. Energy Environ. Sci. 2011, 4, 4786. doi: 10.1039/c1ee02190g

    2. [2]

      (2) Deacon, H. Manufacture of Chlorine. U. S. Pat. 85370A, 1868.

    3. [3]

      (3) Crihan, D.; Knapp, M.; Zweidinger, S.; Lundgren, E.; Weststrate, C. J.; Andersen, J. N.; Seitsonen A. P.; Over, H. Angew. Chem. Int. Edit. 2008, 47, 2131.

    4. [4]

      (4) Tang, J. H.; Chen, X.; Fei, Z. Y.; Zhao, J. H.; Cui, M. F.; Qiao, X. Ind. Eng. Chem. Res. 2013, 52, 11897. doi: 10.1021/ie400200g

    5. [5]

      (5) Seki, K. Catal. Surv. Asia 2010, 14, 168. doi: 10.1007/s10563-010-9091-7

    6. [6]

      (6) Mondelli, C.; Amrute, A. P.; Krumeich, F.; Schmidit, T.; Pérez- Ramírez, J. ChemCatChem 2011, 3, 657. doi: 10.1002/cctc.201000424

    7. [7]

      (7) Mondelli, C.; Amrute, A. P.; Schmidt, T.; Pérez-Ramírez, J. Chem. Commun. 2011, 47, 7173.

    8. [8]

      (8) Hernandez, W. Y.; Laguna, O. H.; Centeno, M. A.; Odriozola, J. A. J. Solid State Chem. 2011, 184, 3014. doi: 10.1016/j.jssc.2011.09.018

    9. [9]

      (9) Cao, H. Y.; Wang, J. L.; Yan, S. H.; Liu, Z. M.; ng, M. C.; Chen, Y. Q. Acta. Phys. -Chim. Sin. 2012, 28 (8), 1936. [曹红岩, 王健礼, 闫生辉, 刘志敏, 龚茂初, 陈耀强. 物理化学学报, 2012, 28 (8), 1936.] doi: 10.3866/PKU.WHXB201205173

    10. [10]

      (10) Wang, S. Y.; Li, N.; Luo, L. F.; Huang, W. X.; Pu, Z. Y.; Wang, J.W.; Hu, G. S.; Luo, M. F.; Lu, J. Q. Appl. Catal. B: Environ. 2014, 144, 325.

    11. [11]

      (11) Amrute, A. P.; Mondelli, C.; Moser, M.; Novell-Leruth, G.; López, N.; Rosenthal, D.; Farra, R.; Schüster, M. E.; Teschner, D.; Schmidt, T.; Pérez-Ramírez, J. J. Catal. 2012, 286, 287. doi: 10.1016/j.jcat.2011.11.016

    12. [12]

      (12) Moser, M.; Mondelli, C.; Schmidt, T.; Girgsdies, F.; Schüster, M. E.; Farra, R.; Szentmiklósi, L.; Teschner, D.; P rez-Ramírez, J. Appl. Catal. B: Environ. 2013, 132-133, 123.

    13. [13]

      (13) Amrute, A. P.; Larrazábal, G. O.; Mondelli, C.; Pérez Ramírez, J. Angew. Chem. Int. Edit. 2013, 52, 9772. doi: 10.1002/ange.201304254

    14. [14]

      (14) Chen, X.; Lü, G. M.; Tang, J. H.; Cui, M. F.; Zhou, Z.; Cao, R.; Qiao, X. J. Chem. Eng. Chin. Univ. 2011, 25, 109. [陈献, 吕高明, 汤吉海, 崔咪芬, 周哲, 曹锐, 乔旭. 高校化学工程学报, 2011, 25, 109.]

    15. [15]

      (15) Fei, Z. Y.; Liu, H. Y.; Dai, Y.; Ji, W. J.; Chen, X.; Tang, J. H.; Cui, M. F.; Qiao, X. Chem. Eng. J. 2014, 257, 273. doi: 10.1016/j.cej.2014.07.033

    16. [16]

      (16) Jampaiah, D.; Tur, K. M.; Ippolito, S. J.; Sabri, Y. M.; Tardio, J.; Bhargava, S. K.; Reddy, B. M. RSC. Adv. 2013, 3, 12963. doi:10.1039/c3ra41441h

    17. [17]

      (17) Farra, R.; García-Melchor, M.; Eichelbaum, M.; Hashagen, M.; Frandsen, W.; Allan, J.; Girgsdies, F.; Szentmiklósi, L.; López, N.; Teschner, D. ACS Catal. 2013, 3, 2256. doi: 10.1021/cs4005002

    18. [18]

      (18) Jiang, J. T.; Wei, X. J.; Xu, C. Y.; Zhou, Z. X.; Zhen, L. J. Magn. Magn. Mater. 2013, 334, 111. doi: 10.1016/j.jmmm.2012.12.036

    19. [19]

      (19) Hernandez, W. Y.; Laguna, O. H.; Centeno, M. A.; Odriozola, J. A. J. Solid State Chem. 2011, 184, 3014. doi: 10.1016/j.jssc.2011.09.018

    20. [20]

      (20) Si, R.; Zhang, Y.W.; Li, S. J.; Lin, B. X.; Yan, C. H. J. Phys. Chem. B 2004, 33, 12481.

    21. [21]

      (21) Meng, Z. H.; Yang, P.; Zhou, R. X. Acta Phys. -Chim. Sin. 2013, 29 (2), 391. [孟中华, 杨鹏, 周仁贤. 物理化学学报, 2013, 29 (2), 391.] doi: 10.3866/PKU.WHXB201212072

    22. [22]

      (22) Yang, D.; Wang, L.; Sun, Y. Z.; Zhou, K. J. Phys. Chem. C 2010, 114, 8926. doi: 10.1021/jp912227p

    23. [23]

      (23) Liu, L.; Yao, Z.; Deng, Y.; Gao, F.; Liu, B.; Dong, L. ChemCatChem 2011, 3, 978. doi: 10.1002/cctc.v3.6

    24. [24]

      (24) Reddy, B. M.; Saikia, P.; Bharali, P.; Park, S. E.; Muhler, M.; Grüunert, W. J. Phys. Chem. C 2009, 113, 2452. doi: 10.1021/jp809837g

    25. [25]

      (25) Katta, L.; Sudarsanam, P.; Thrimurthulu, G.; Reddy, B. M. Appl. Catal. B: Environ. 2010, 101, 101. doi: 10.1016/j.apcatb.2010.09.012

    26. [26]

      (26) Gao, X.; Du, X. S.; Cui, L.W.; Fu, Y. C.; Luo, Z. Y.; Cen, K. F. Catal. Commun. 2010, 12, 255.

    27. [27]

      (27) Menon, U.; Poelman, H.; Bliznuk, V.; Galvita, V. V.; Poelman, D.; Marin, G. B. J. Catal. 2012, 295, 91. doi: 10.1016/j.jcat.2012.07.026

    28. [28]

      (28) Amrute, A. P.; Mondelli, C.; Miguel, A. G.; Hevia, P. J. J. Phys. Chem. C 2011, 115, 1056.

    29. [29]

      (29) Farra, R.; Wrabetz, S.; Schuster, E. S.; Stotz, E.; Hamilton, N. G.; Amrute, A. P.; Pérez-Ramírez, J.; López, N.; Teschner, D. Phys. Chem. Chem. Phys. 2013, 15, 3454. doi: 10.1039/c2cp42767b


  • 加载中
    1. [1]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    2. [2]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    5. [5]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    6. [6]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    7. [7]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    8. [8]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    11. [11]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    12. [12]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    13. [13]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    14. [14]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    15. [15]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    19. [19]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    20. [20]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

Metrics
  • PDF Downloads(317)
  • Abstract views(726)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return