Citation: AN Wei, LIU Tian-Hui, WANG Chun-Hai, DIAO Chuan-Ling, LUO Neng-Neng, LIU Yong, QI Ze-Ming, SHAO Tao, WANG Yu-Yin, JIAO Huan, TIAN Guang-Shan, JING Xi-Ping. Assignment for Vibrational Spectra of BaTiO3 Ferroelectric Ceramic Based on the First-Principles Calculation[J]. Acta Physico-Chimica Sinica, ;2015, 31(6): 1059-1068. doi: 10.3866/PKU.WHXB201504144 shu

Assignment for Vibrational Spectra of BaTiO3 Ferroelectric Ceramic Based on the First-Principles Calculation

  • Received Date: 14 February 2015
    Available Online: 14 April 2015

    Fund Project: 国家自然科学基金(21071009, 21371015)资助项目 (21071009, 21371015)

  • ABaTiO3 ceramic was synthesized using a conventional solid-state reaction, and sintered at 1400 ℃ for 4 h. The pure tetra nal phase was confirmed by Rietveld refinement of the X-ray diffraction data. The Raman spectrum and the far infrared (FIR) reflective spectrum were obtained and analyzed using Lorentz fitting and the four-parameter semi-quantum model fitting, respectively. The Raman and FIR spectra were assigned based on first-principles calculations, and consideration of the splitting of the transverse optical modes and longitudinal optical modes. All the vibrational modes were represented by linear combinations of the symmetry coordinates deduced by group theory analysis. Among the 12 optical modes, the Raman-active-only mode, B1, can be viewed as the wing-flapping vibration of the O4-O5 plane perpendicular to the z-axis in the O6 octahedron. The A1(1) mode and the E(1) soft mode are split by the triply degenerate F1u mode of cubic BaTiO3, resulting in the ferroelectric property of tetra nal BaTiO3. The appearance of the A1(1) mode leads to crystal polarization along the z-axis and the E(1) mode causes the large permittivity. These two modes can be described as vibration of the Ti atom against the O6 octahedral cage along the z-axis [A1(1)] and on the xy-plane [E(1)].

  • 加载中
    1. [1]

      (1) Moulson, A. J.; Herbert, J. M. Electroceramics; Chapman and Hall: London, 1990; pp 182-241.

    2. [2]

      (2) Vanderah, T. A. Science 2002, 298, 1182. doi: 10.1126/ science.1078489

    3. [3]

      (3) Petzelt, J.; Kozlov, G. V.; Volkov, A. A.; Ishibashi, Y. Zeitschrift Fur Physik B-Condensed Matter 1979, 33, 369.

    4. [4]

      (4) Wakino, K.; Murata, M.; Tamura, H. J. Am. Ceram. Soc. 1986, 69, 34. doi: 10.1111/jace.1986.69.issue-1

    5. [5]

      (5) Gervais, F.; Piriou, B. Phys. Rev. B 1974, 10, 1642. doi: 10.1103/ PhysRevB.10.1642

    6. [6]

      (6) Fukuda, K.; Kitoh, R.; Awai, I. J. Am. Ceram. Soc. 1994, 77, 149. doi: 10.1111/jace.1994.77.issue-1

    7. [7]

      (7) Qin, N.; Fan, X. C.; Wu, S. Y.; Chen, X. M. J. Appl. Phys. 2007, 101, 0641036.

    8. [8]

      (8) Fan, X. C.; Mao, M. M.; Chen, X. M. J. Am. Ceram. Soc. 2008, 91, 2917. doi: 10.1111/jace.2008.91.issue-9

    9. [9]

      (9) Zheng, C.W.; Fan, X. C.; Chen, X. M. J. Am. Ceram. Soc. 2008, 91, 490. doi: 10.1111/jace.2008.91.issue-2

    10. [10]

      (10) Chen, Y. C.; Cheng, H. F.; Liu, H. L.; Chia, C. T.; Lin, I. N. J. Appl. Phys. 2003, 94, 3365. doi: 10.1063/1.1597969

    11. [11]

      (11) Lin, I. N.; Chia, C. T.; Liu, H. L.; Cheng, H. F.; Freer, R.; Barwick, M.; Azough, F. J. Appl. Phys. 2007, 102, 0441124.

    12. [12]

      (12) Wang, C. H.; Jing, X. P. J. Am. Ceram. Soc. 2009, 92, 1547. doi: 10.1111/jace.2009.92.issue-7

    13. [13]

      (13) Wang, C. H.; Liu, G. H.; Jing, X. P.; Tian, G. S.; Lu, X.; Shao, J. J. Am. Ceram. Soc. 2010, 93, 3782. doi: 10.1111/jace.2010.93.issue-11

    14. [14]

      (14) Wang, C. H.; Kuang, X. J.; Jing, X. P.; Lu, J.; Lu, X.; Shao, J. J. Appl. Phys. 2008, 103, 074105. doi: 10.1063/1.2903913

    15. [15]

      (15) Wang, C. H.; Jing, X. P.; Feng, W.; Lu, J. J. Appl. Phys. 2008, 104, 034112. doi: 10.1063/1.2966717

    16. [16]

      (16) Diao, C. L.; Wang, C. H.; Luo, N. N.; Qi, Z. M.; Shao, T.; Wang, Y. Y.; Lu, J.; Shi, F.; Jing, X. P. J. Am. Ceram. Soc. 2013, 96, 2898. doi: 10.1111/jace.12429

    17. [17]

      (17) Diao, C. L.; Wang, C. H.; Luo, N. N.; Qi, Z. M.; Shao, T.; Wang, Y. Y.; Lu, J.; Wang, Q. C.; Kuang, X. J.; Fang, L.; Shi, F.; Jing, X. P. J. Appl. Phys. 2014, 115, 114103. doi: 10.1063/1.4868226

    18. [18]

      (18) Scott, J. F. Ferroelectric Memories; Springer: Berlin, 2000.

    19. [19]

      (19) Waser, R. Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices;Wiley- VCH:Weinheim, 2003.

    20. [20]

      (20) Slater, J. C. Phys. Rev. 1950, 78, 748. doi: 10.1103/ PhysRev.78.748

    21. [21]

      (21) Devonshire, A. F. Phil. Mag. (Series 7) 1949, 40, 1040. doi: 10.1080/14786444908561372

    22. [22]

      (22) Anderson, P.W. Phys. Rev. 1950, 78, 341.

    23. [23]

      (23) Luspin, Y.; Servoin, J. L.; Gervais, F. J. Phys. C: Solid State Phys. 1980, 13, 3761. doi: 10.1088/0022-3719/13/19/018

    24. [24]

      (24) DiDomenico, M.; Wemple, S. H.; Porto, S. P. S.; Bauman, R. P. Phys. Rev. 1968, 174, 522. doi: 10.1103/PhysRev.174.522

    25. [25]

      (25) Wada, S.; Yasuno, H.; Hoshina, T.; Kakemoto, H.; Kameshima, Y.; Tsurumi, T.; Shimada, T. J. Eur. Ceram. Soc. 2006, 26, 1807. doi: 10.1016/j.jeurceramsoc.2005.09.091

    26. [26]

      (26) Xie, Y.; Yu, H. T.; Zhang, G. X.; Fu, H. G.; Sun, J. Z. J. Phys. Chem. C 2007, 111, 6343. doi: 10.1021/jp0658997

    27. [27]

      (27) Rakotovelo, G.; Moussounda, P. S.; Haroun, M. F.; Legare, P.; Rakotomahevitra, A.; Rakotomalala, M.; Parlebas, J. C. Surf. Sci. 2009, 603, 1221. doi: 10.1016/j.susc.2009.03.006

    28. [28]

      (28) Borstel, G.; Eglitis, R.; Kotomin, E.; Heifets, E. J. Crystal Growth 2002, 237, 687.

    29. [29]

      (29) Dawson, J. A.; Harding, J. H.; Chen, H.; Sinclair, D. C. J. Appl. Phys. 2012, 111, 094108. doi: 10.1063/1.4711099

    30. [30]

      (30) Evarestov, R. A.; Bandura, A. V.; Kuruch, D. D. J. Comput. Chem. 2013, 34, 175. doi: 10.1002/jcc.23115

    31. [31]

      (31) Evarestov, R. A.; Bandura, A. V. J. Comput. Chem. 2012, 33, 1123. doi: 10.1002/jcc.v33.11

    32. [32]

      (32) Karlsruhe, A. TOPAS V3.1: General Profile and Structure Analysis Software for Powder Diffraction Data; Bruker AXS Inc: Karlsruhe, 2005.

    33. [33]

      (33) Hakki, B.W.; Coleman, P. D. IEEE Trans. Microwave Theory Tech. 1960, 8, 402. doi: 10.1109/TMTT.1960.1124749

    34. [34]

      (34) Courtney, W. E. IEEE Trans. Microwave Theory Tech 1970, 18, 476. doi: 10.1109/TMTT.1970.1127271

    35. [35]

      (35) Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. J. Phys.: Condes. Matter. 2002, 14, 2717.

    36. [36]

      (36) Xiao, C.; Jin, C.; Wang, X. Mater. Chem. Phys. 2008, 111, 209. doi: 10.1016/j.matchemphys.2008.01.020

    37. [37]

      (37) Kroumova, E.; Aroyo, M. I.; Perez-Mato, J.; Kirov, A.; Capillas, C.; Iyantchev, S.; Wondratschek, H. Phase Transitions 2003, 76, 155.

    38. [38]

      (38) Poulet, H.; Mathieu, J. P. Vibration Spectra and Symmetry of Crystals, 1st ed.; Science Publishers Ltd.: Elk Grove Village, 1976; pp 127-273, 475-545.

    39. [39]

      (39) Hoshina, T.; Kakemoto, H.; Tsurumi, T.; Wada, S.; Yashima, M. J. Appl. Phys. 2006, 99, 054311. doi: 10.1063/1.2179971

    40. [40]

      (40) Cho, W. S.; Hamada, E. J. Alloy. Compd. 1998, 266, 118. doi: 10.1016/S0925-8388(97)00446-5

    41. [41]

      (41) Naik, R.; Nazarko, J. J.; Flattery, C. S.; Venkateswaran, U. D.; Naik, V. M.; Mohammed, M. S.; Auner, G.W.; Mantese, J. V.; Schubring, N.W.; Micheli, A. L.; Catalan, A. B. Phys. Rev. B 2000, 61, 11367. doi: 10.1103/PhysRevB.61.11367

    42. [42]

      (42) Hayashi, H.; Nakamura, T.; Ebina, T. J. Phys. Chem. Solids 2013, 74, 957. doi: 10.1016/j.jpcs.2013.02.010

    43. [43]

      (43) Li, R. J.; Wei, W. X.; Hai, J. L.; Gao, L. X.; Gao, Z.W.; Fan, Y. Y. J. Alloy. Compd. 2013, 574, 212. doi: 10.1016/j.jallcom.2013.04.203

    44. [44]

      (44) Yuzyuk, Y. Phys. Solid State 2012, 54, 1026. doi: 10.1134/S1063783412050502

    45. [45]

      (45) Zhang, W. H.; Chen, L.; Tao, Y. T.; Zhang, W. H.; Chen, J.; Zhang, J. X. Physica B: Condensed Matter 2011, 406, 4630. doi: 10.1016/j.physb.2011.09.046

    46. [46]

      (46) Pavlovic, V. P.; Krsti?, J.; Š?epanovi?, M. J.; Doj?ilovi?, J.; Mini?; Blanuša, J.; Stevanovi?, S.; Miti?, V.; Pavlovi?, V. B. Ceramics International 2011, 37, 2513. doi: 10.1016/j. ceramint.2011.03.064

    47. [47]

      (47) Venkateswaran, U. D.; Naik, V. M.; Naik, R. Phys. Rev. B 1998, 58, 14256. doi: 10.1103/PhysRevB.58.14256

    48. [48]

      (48) Ostapchuk, T.; Petzelt, J.; Savinov, M.; Buscaglia, V.; Mitoseriu, L. Phase Transitions 2006, 79, 361. doi: 10.1080/01411590600892047

    49. [49]

      (49) Spitzer, W. G.; Miller, R. C.; Kleinman, D. A.; Howarth, L. E. Phys. Rev. 1962, 126, 1710. doi: 10.1103/PhysRev.126.1710

    50. [50]

      (50) Servoin, J. L.; Gervais, F.; Quittet, A. M.; Luspin, Y. Phys. Rev. B 1980, 21, 2038. doi: 10.1103/PhysRevB.21.2038

    51. [51]

      (51) Dias, A.; Paschoal, C.W. A.; Moreira, R. L. J. Am. Ceram. Soc. 2003, 86, 1985. doi: 10.1111/jace.2003.86.issue-11

    52. [52]

      (52) Lage, M. M.; Matinaga, F. M.; Gesland, J. Y.; Moreira, R. L. J. Appl. Phys. 2006, 99, 0535105.

    53. [53]

      (53) Kingery, W. D.; Bowen, H. K.; Uhlmann, D. R. Introduction to Ceramics, 2nd ed.; JohnWiley & Sons: New York, 1976; pp 939, 968-969.

    54. [54]

      (54) Kuang, X.; Jing, X.; Tang, Z. J. Am. Ceram. Soc. 2006, 89, 241. doi: 10.1111/jace.2006.89.issue-1


  • 加载中
    1. [1]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    2. [2]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    3. [3]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    4. [4]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    5. [5]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    6. [6]

      Suqing Shi Anyang Li Yuan He Jianli Li Xinjun Luan . Exploration and Practice of the “Progressive” Integrated Training Mode for Innovative Chemistry Talents at Comprehensive Universities in Western China. University Chemistry, 2024, 39(6): 42-49. doi: 10.3866/PKU.DXHX202402009

    7. [7]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    8. [8]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    9. [9]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    10. [10]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    11. [11]

      Xiping Luo Xing Wang Shengxiang Yang Jianzhong Guo Yuxuan Wang Xuejuan Yang . Innovative “One Body, Dual Wings” Embedded Talent Cultivation Model: Practice in the Construction of Applied Chemistry Major at Zhejiang Agriculture and Forestry University. University Chemistry, 2024, 39(3): 205-209. doi: 10.3866/PKU.DXHX202309058

    12. [12]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    13. [13]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    14. [14]

      Chengxia Tong Yajie Li Jin Yan Xuejian Qu Shigang Wei Yong Fan Zhiguang Song Yupeng Guo . The Construction and Practice of a Comprehensive and Three-Dimensional Practical Education Model. University Chemistry, 2024, 39(7): 49-55. doi: 10.12461/PKU.DXHX202404155

    15. [15]

      Junlin Yan Changhao Wang Quanguo Zhai Chenghui Liu Dong Xue . A New Construction Model and Practice of Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 64-68. doi: 10.12461/PKU.DXHX202405005

    16. [16]

      Weizhou Jiao Zhiwei Liu Chao Zhang Zhiguo Yuan Guisheng Qi Jing Gao . Construction and Implementation of a Mode of Chemical Talent Training Driven by Practice and Innovation Ability. University Chemistry, 2024, 39(7): 76-81. doi: 10.12461/PKU.DXHX202405011

    17. [17]

      Yecang Tang Shan Ling Zhen Fang . Exploration of a Hierarchical and Integration-Oriented Talent Training Model in the Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 188-192. doi: 10.12461/PKU.DXHX202405107

    18. [18]

      Xu Liu Chengfang Liu Jie Huang Xiangchun Li Wenyong Lai . Research on the Application of Diversified Teaching Models in the Teaching of Physical Chemistry. University Chemistry, 2024, 39(8): 112-118. doi: 10.3866/PKU.DXHX202402021

    19. [19]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Exploration on the Integration Mode of Instrumental Analysis with Science and Education under the Background of Artificial Intelligence Era. University Chemistry, 2024, 39(8): 365-374. doi: 10.12461/PKU.DXHX202403014

    20. [20]

      Yan Liu Xiaojun Han Ping Xu Guoxu Zhang Yu Wang Zhicheng Zhang Dianpeng Qi . “Five Measures” Based Science and Education Integration Experimental Teaching Mode to Promote the Construction of “Specialized Experiment” Curriculum. University Chemistry, 2024, 39(10): 299-307. doi: 10.12461/PKU.DXHX202405002

Metrics
  • PDF Downloads(366)
  • Abstract views(1269)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return