Citation: AN Wei, LIU Tian-Hui, WANG Chun-Hai, DIAO Chuan-Ling, LUO Neng-Neng, LIU Yong, QI Ze-Ming, SHAO Tao, WANG Yu-Yin, JIAO Huan, TIAN Guang-Shan, JING Xi-Ping. Assignment for Vibrational Spectra of BaTiO3 Ferroelectric Ceramic Based on the First-Principles Calculation[J]. Acta Physico-Chimica Sinica, ;2015, 31(6): 1059-1068. doi: 10.3866/PKU.WHXB201504144
-
ABaTiO3 ceramic was synthesized using a conventional solid-state reaction, and sintered at 1400 ℃ for 4 h. The pure tetra nal phase was confirmed by Rietveld refinement of the X-ray diffraction data. The Raman spectrum and the far infrared (FIR) reflective spectrum were obtained and analyzed using Lorentz fitting and the four-parameter semi-quantum model fitting, respectively. The Raman and FIR spectra were assigned based on first-principles calculations, and consideration of the splitting of the transverse optical modes and longitudinal optical modes. All the vibrational modes were represented by linear combinations of the symmetry coordinates deduced by group theory analysis. Among the 12 optical modes, the Raman-active-only mode, B1, can be viewed as the wing-flapping vibration of the O4-O5 plane perpendicular to the z-axis in the O6 octahedron. The A1(1) mode and the E(1) soft mode are split by the triply degenerate F1u mode of cubic BaTiO3, resulting in the ferroelectric property of tetra nal BaTiO3. The appearance of the A1(1) mode leads to crystal polarization along the z-axis and the E(1) mode causes the large permittivity. These two modes can be described as vibration of the Ti atom against the O6 octahedral cage along the z-axis [A1(1)] and on the xy-plane [E(1)].
-
Keywords:
-
First-principles calculation
, - Raman mode,
- IR mode,
- Dielectric property
-
-
-
[1]
(1) Moulson, A. J.; Herbert, J. M. Electroceramics; Chapman and Hall: London, 1990; pp 182-241.
-
[2]
(2) Vanderah, T. A. Science 2002, 298, 1182. doi: 10.1126/ science.1078489
-
[3]
(3) Petzelt, J.; Kozlov, G. V.; Volkov, A. A.; Ishibashi, Y. Zeitschrift Fur Physik B-Condensed Matter 1979, 33, 369.
-
[4]
(4) Wakino, K.; Murata, M.; Tamura, H. J. Am. Ceram. Soc. 1986, 69, 34. doi: 10.1111/jace.1986.69.issue-1
-
[5]
(5) Gervais, F.; Piriou, B. Phys. Rev. B 1974, 10, 1642. doi: 10.1103/ PhysRevB.10.1642
-
[6]
(6) Fukuda, K.; Kitoh, R.; Awai, I. J. Am. Ceram. Soc. 1994, 77, 149. doi: 10.1111/jace.1994.77.issue-1
-
[7]
(7) Qin, N.; Fan, X. C.; Wu, S. Y.; Chen, X. M. J. Appl. Phys. 2007, 101, 0641036.
-
[8]
(8) Fan, X. C.; Mao, M. M.; Chen, X. M. J. Am. Ceram. Soc. 2008, 91, 2917. doi: 10.1111/jace.2008.91.issue-9
-
[9]
(9) Zheng, C.W.; Fan, X. C.; Chen, X. M. J. Am. Ceram. Soc. 2008, 91, 490. doi: 10.1111/jace.2008.91.issue-2
-
[10]
(10) Chen, Y. C.; Cheng, H. F.; Liu, H. L.; Chia, C. T.; Lin, I. N. J. Appl. Phys. 2003, 94, 3365. doi: 10.1063/1.1597969
-
[11]
(11) Lin, I. N.; Chia, C. T.; Liu, H. L.; Cheng, H. F.; Freer, R.; Barwick, M.; Azough, F. J. Appl. Phys. 2007, 102, 0441124.
-
[12]
(12) Wang, C. H.; Jing, X. P. J. Am. Ceram. Soc. 2009, 92, 1547. doi: 10.1111/jace.2009.92.issue-7
-
[13]
(13) Wang, C. H.; Liu, G. H.; Jing, X. P.; Tian, G. S.; Lu, X.; Shao, J. J. Am. Ceram. Soc. 2010, 93, 3782. doi: 10.1111/jace.2010.93.issue-11
-
[14]
(14) Wang, C. H.; Kuang, X. J.; Jing, X. P.; Lu, J.; Lu, X.; Shao, J. J. Appl. Phys. 2008, 103, 074105. doi: 10.1063/1.2903913
-
[15]
(15) Wang, C. H.; Jing, X. P.; Feng, W.; Lu, J. J. Appl. Phys. 2008, 104, 034112. doi: 10.1063/1.2966717
-
[16]
(16) Diao, C. L.; Wang, C. H.; Luo, N. N.; Qi, Z. M.; Shao, T.; Wang, Y. Y.; Lu, J.; Shi, F.; Jing, X. P. J. Am. Ceram. Soc. 2013, 96, 2898. doi: 10.1111/jace.12429
-
[17]
(17) Diao, C. L.; Wang, C. H.; Luo, N. N.; Qi, Z. M.; Shao, T.; Wang, Y. Y.; Lu, J.; Wang, Q. C.; Kuang, X. J.; Fang, L.; Shi, F.; Jing, X. P. J. Appl. Phys. 2014, 115, 114103. doi: 10.1063/1.4868226
-
[18]
(18) Scott, J. F. Ferroelectric Memories; Springer: Berlin, 2000.
-
[19]
(19) Waser, R. Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices;Wiley- VCH:Weinheim, 2003.
-
[20]
(20) Slater, J. C. Phys. Rev. 1950, 78, 748. doi: 10.1103/ PhysRev.78.748
-
[21]
(21) Devonshire, A. F. Phil. Mag. (Series 7) 1949, 40, 1040. doi: 10.1080/14786444908561372
-
[22]
(22) Anderson, P.W. Phys. Rev. 1950, 78, 341.
-
[23]
(23) Luspin, Y.; Servoin, J. L.; Gervais, F. J. Phys. C: Solid State Phys. 1980, 13, 3761. doi: 10.1088/0022-3719/13/19/018
-
[24]
(24) DiDomenico, M.; Wemple, S. H.; Porto, S. P. S.; Bauman, R. P. Phys. Rev. 1968, 174, 522. doi: 10.1103/PhysRev.174.522
-
[25]
(25) Wada, S.; Yasuno, H.; Hoshina, T.; Kakemoto, H.; Kameshima, Y.; Tsurumi, T.; Shimada, T. J. Eur. Ceram. Soc. 2006, 26, 1807. doi: 10.1016/j.jeurceramsoc.2005.09.091
-
[26]
(26) Xie, Y.; Yu, H. T.; Zhang, G. X.; Fu, H. G.; Sun, J. Z. J. Phys. Chem. C 2007, 111, 6343. doi: 10.1021/jp0658997
-
[27]
(27) Rakotovelo, G.; Moussounda, P. S.; Haroun, M. F.; Legare, P.; Rakotomahevitra, A.; Rakotomalala, M.; Parlebas, J. C. Surf. Sci. 2009, 603, 1221. doi: 10.1016/j.susc.2009.03.006
-
[28]
(28) Borstel, G.; Eglitis, R.; Kotomin, E.; Heifets, E. J. Crystal Growth 2002, 237, 687.
-
[29]
(29) Dawson, J. A.; Harding, J. H.; Chen, H.; Sinclair, D. C. J. Appl. Phys. 2012, 111, 094108. doi: 10.1063/1.4711099
-
[30]
(30) Evarestov, R. A.; Bandura, A. V.; Kuruch, D. D. J. Comput. Chem. 2013, 34, 175. doi: 10.1002/jcc.23115
-
[31]
(31) Evarestov, R. A.; Bandura, A. V. J. Comput. Chem. 2012, 33, 1123. doi: 10.1002/jcc.v33.11
-
[32]
(32) Karlsruhe, A. TOPAS V3.1: General Profile and Structure Analysis Software for Powder Diffraction Data; Bruker AXS Inc: Karlsruhe, 2005.
-
[33]
(33) Hakki, B.W.; Coleman, P. D. IEEE Trans. Microwave Theory Tech. 1960, 8, 402. doi: 10.1109/TMTT.1960.1124749
-
[34]
(34) Courtney, W. E. IEEE Trans. Microwave Theory Tech 1970, 18, 476. doi: 10.1109/TMTT.1970.1127271
-
[35]
(35) Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. J. Phys.: Condes. Matter. 2002, 14, 2717.
-
[36]
(36) Xiao, C.; Jin, C.; Wang, X. Mater. Chem. Phys. 2008, 111, 209. doi: 10.1016/j.matchemphys.2008.01.020
-
[37]
(37) Kroumova, E.; Aroyo, M. I.; Perez-Mato, J.; Kirov, A.; Capillas, C.; Iyantchev, S.; Wondratschek, H. Phase Transitions 2003, 76, 155.
-
[38]
(38) Poulet, H.; Mathieu, J. P. Vibration Spectra and Symmetry of Crystals, 1st ed.; Science Publishers Ltd.: Elk Grove Village, 1976; pp 127-273, 475-545.
-
[39]
(39) Hoshina, T.; Kakemoto, H.; Tsurumi, T.; Wada, S.; Yashima, M. J. Appl. Phys. 2006, 99, 054311. doi: 10.1063/1.2179971
-
[40]
(40) Cho, W. S.; Hamada, E. J. Alloy. Compd. 1998, 266, 118. doi: 10.1016/S0925-8388(97)00446-5
-
[41]
(41) Naik, R.; Nazarko, J. J.; Flattery, C. S.; Venkateswaran, U. D.; Naik, V. M.; Mohammed, M. S.; Auner, G.W.; Mantese, J. V.; Schubring, N.W.; Micheli, A. L.; Catalan, A. B. Phys. Rev. B 2000, 61, 11367. doi: 10.1103/PhysRevB.61.11367
-
[42]
(42) Hayashi, H.; Nakamura, T.; Ebina, T. J. Phys. Chem. Solids 2013, 74, 957. doi: 10.1016/j.jpcs.2013.02.010
-
[43]
(43) Li, R. J.; Wei, W. X.; Hai, J. L.; Gao, L. X.; Gao, Z.W.; Fan, Y. Y. J. Alloy. Compd. 2013, 574, 212. doi: 10.1016/j.jallcom.2013.04.203
-
[44]
(44) Yuzyuk, Y. Phys. Solid State 2012, 54, 1026. doi: 10.1134/S1063783412050502
-
[45]
(45) Zhang, W. H.; Chen, L.; Tao, Y. T.; Zhang, W. H.; Chen, J.; Zhang, J. X. Physica B: Condensed Matter 2011, 406, 4630. doi: 10.1016/j.physb.2011.09.046
-
[46]
(46) Pavlovic, V. P.; Krsti?, J.; Š?epanovi?, M. J.; Doj?ilovi?, J.; Mini?; Blanuša, J.; Stevanovi?, S.; Miti?, V.; Pavlovi?, V. B. Ceramics International 2011, 37, 2513. doi: 10.1016/j. ceramint.2011.03.064
-
[47]
(47) Venkateswaran, U. D.; Naik, V. M.; Naik, R. Phys. Rev. B 1998, 58, 14256. doi: 10.1103/PhysRevB.58.14256
-
[48]
(48) Ostapchuk, T.; Petzelt, J.; Savinov, M.; Buscaglia, V.; Mitoseriu, L. Phase Transitions 2006, 79, 361. doi: 10.1080/01411590600892047
-
[49]
(49) Spitzer, W. G.; Miller, R. C.; Kleinman, D. A.; Howarth, L. E. Phys. Rev. 1962, 126, 1710. doi: 10.1103/PhysRev.126.1710
-
[50]
(50) Servoin, J. L.; Gervais, F.; Quittet, A. M.; Luspin, Y. Phys. Rev. B 1980, 21, 2038. doi: 10.1103/PhysRevB.21.2038
-
[51]
(51) Dias, A.; Paschoal, C.W. A.; Moreira, R. L. J. Am. Ceram. Soc. 2003, 86, 1985. doi: 10.1111/jace.2003.86.issue-11
-
[52]
(52) Lage, M. M.; Matinaga, F. M.; Gesland, J. Y.; Moreira, R. L. J. Appl. Phys. 2006, 99, 0535105.
-
[53]
(53) Kingery, W. D.; Bowen, H. K.; Uhlmann, D. R. Introduction to Ceramics, 2nd ed.; JohnWiley & Sons: New York, 1976; pp 939, 968-969.
-
[54]
(54) Kuang, X.; Jing, X.; Tang, Z. J. Am. Ceram. Soc. 2006, 89, 241. doi: 10.1111/jace.2006.89.issue-1
-
[1]
-
-
[1]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[2]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[3]
Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064
-
[4]
Cuiwu MO , Gangmin ZHANG , Chao WU , Zhipeng HUANG , Chi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045
-
[5]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[6]
Suqing Shi , Anyang Li , Yuan He , Jianli Li , Xinjun Luan . Exploration and Practice of the “Progressive” Integrated Training Mode for Innovative Chemistry Talents at Comprehensive Universities in Western China. University Chemistry, 2024, 39(6): 42-49. doi: 10.3866/PKU.DXHX202402009
-
[7]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[8]
Jingyi Chen , Fu Liu , Tiejun Zhu , Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111
-
[9]
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
-
[10]
Zhaoyue Lü , Zhehao Chen , Yi Ni , Duanbin Luo , Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047
-
[11]
Xiping Luo , Xing Wang , Shengxiang Yang , Jianzhong Guo , Yuxuan Wang , Xuejuan Yang . Innovative “One Body, Dual Wings” Embedded Talent Cultivation Model: Practice in the Construction of Applied Chemistry Major at Zhejiang Agriculture and Forestry University. University Chemistry, 2024, 39(3): 205-209. doi: 10.3866/PKU.DXHX202309058
-
[12]
Qiying Xia , Guokui Liu , Yunzhi Li , Yaoyao Wei , Xia Leng , Guangli Zhou , Aixiang Wang , Congcong Mi , Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007
-
[13]
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
-
[14]
Chengxia Tong , Yajie Li , Jin Yan , Xuejian Qu , Shigang Wei , Yong Fan , Zhiguang Song , Yupeng Guo . The Construction and Practice of a Comprehensive and Three-Dimensional Practical Education Model. University Chemistry, 2024, 39(7): 49-55. doi: 10.12461/PKU.DXHX202404155
-
[15]
Junlin Yan , Changhao Wang , Quanguo Zhai , Chenghui Liu , Dong Xue . A New Construction Model and Practice of Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 64-68. doi: 10.12461/PKU.DXHX202405005
-
[16]
Weizhou Jiao , Zhiwei Liu , Chao Zhang , Zhiguo Yuan , Guisheng Qi , Jing Gao . Construction and Implementation of a Mode of Chemical Talent Training Driven by Practice and Innovation Ability. University Chemistry, 2024, 39(7): 76-81. doi: 10.12461/PKU.DXHX202405011
-
[17]
Yecang Tang , Shan Ling , Zhen Fang . Exploration of a Hierarchical and Integration-Oriented Talent Training Model in the Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 188-192. doi: 10.12461/PKU.DXHX202405107
-
[18]
Xu Liu , Chengfang Liu , Jie Huang , Xiangchun Li , Wenyong Lai . Research on the Application of Diversified Teaching Models in the Teaching of Physical Chemistry. University Chemistry, 2024, 39(8): 112-118. doi: 10.3866/PKU.DXHX202402021
-
[19]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Exploration on the Integration Mode of Instrumental Analysis with Science and Education under the Background of Artificial Intelligence Era. University Chemistry, 2024, 39(8): 365-374. doi: 10.12461/PKU.DXHX202403014
-
[20]
Yan Liu , Xiaojun Han , Ping Xu , Guoxu Zhang , Yu Wang , Zhicheng Zhang , Dianpeng Qi . “Five Measures” Based Science and Education Integration Experimental Teaching Mode to Promote the Construction of “Specialized Experiment” Curriculum. University Chemistry, 2024, 39(10): 299-307. doi: 10.12461/PKU.DXHX202405002
-
[1]
Metrics
- PDF Downloads(366)
- Abstract views(1269)
- HTML views(57)