Citation: QIAO Zhi, XIE Xin-Jian, XUE Jun-Ming, LIU Hui, LIANG Li-Min, HAO Qiu-Yan, LIU Cai-Chi. Optimization of Intrinsic Silicon Passivation Layers in nc-Si:H/c-Si Silicon Heterojunction Solar Cells[J]. Acta Physico-Chimica Sinica, ;2015, 31(6): 1207-1214. doi: 10.3866/PKU.WHXB201504142 shu

Optimization of Intrinsic Silicon Passivation Layers in nc-Si:H/c-Si Silicon Heterojunction Solar Cells

  • Received Date: 5 January 2015
    Available Online: 14 April 2015

    Fund Project: 国家高技术研究发展计划项目(863) (2012AA050301) (863) (2012AA050301)河北省教育厅科研计划项目(Z2010304)资助 (Z2010304)

  • A series of intrinsic silicon thin films were prepared using radio- frequency plasma-enhanced chemical vapor deposition (RF-PECVD) at low temperature and low power density. We investigated the influence of silane concentration (CS) on the structural, optical, and electronic properties, and passivation quality of the intrinsic silicon films, and the performances of hydrogenated nanocrystalline silicon/crystalline silicon (nc-Si:H/ c-Si) silicon heterojunction (SHJ) solar cells. The results show that with decreasing silane concentration, substantial changes in the crystalline volume fraction, hydrogen concentration, structure factor, optical bandgap, and photosensitivity of the film take place in the transition zone. The passivation quality of intrinsic silicon thin films is decided by the hydrogen content and bonding structure of the film. Films close to the transition zone show od compactness and photosensitivities, high hydrogen content, and low state densities, and contain abundant SiH bonds. The films provide excellent passivation for c-Si surfaces and significantly enhance the open-circuit voltages of nc-Si:H/c-Si SHJ solar cells. However, the passivation quality deteriorates seriously when the film is too thin. In this work, the optimum silane concentration was found to be 6% (molar fraction). By optimizing the film thickness of the passivation layers with CS=6%, we obtained an nc-Si:H/c-Si SHJ solar cell with an open-circuit voltage of 672 mV, short-circuit current density of 35.1 mA·cm-2, fill factor of 0.73, and efficiency of 17.3%.

  • 加载中
    1. [1]

      (1) Wang, L. G.; Zhang, X. D.; Wang, F. Y.; Wang, N.; Jiang, Y. J.; Hao, Q. Y.; Xu, S. Z.; Wei, C. C.; Zhao, Y. Acta Phys. -Chim. Sin. 2014, 30 (9), 1758. [王利果, 张晓丹, 王奉友, 王宁, 姜元建, 郝秋艳, 许盛之, 魏长春, 赵颖. 物理化学学报, 2014, 30 (9), 1758.] doi: 10.3866/PKU.WHXB201406301

    2. [2]

      (2) Zeman, M.; Zhang, D. Heterojunction Silicon Based Solar Cells. In Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells; Springer: Verlag, Berlin, Heidelberg, 2012; pp 13-43.

    3. [3]

      (3) DeWolf, S.; Demaurex, B.; Descoeudres, A.; Ballif, C. Phys. Rev. B 2011, 83 (23), 233301. doi: 10.1103/ PhysRevB.83.233301

    4. [4]

      (4) Zhao, L.; Zhou, C.; Li, H.; Diao, H.; Wang, W. Sol. Energy Mater. Sol. Cells 2008, 92 (6), 673. doi: 10.1016/j. solmat.2008.01.018

    5. [5]

      (5) Dao, V. A.; Heo, J.; Choi, H.; Kim, Y.; Park, S.; Jung, S.; Lakshminarayan, N.; Yi, J. Sol. Energy 2010, 84 (5), 777. doi: 10.1016/j.solener.2010.01.029

    6. [6]

      (6) Kim, S.; Dao, V. A.; Lee, Y.; Shin, C.; Park, J.; Cho, J.; Yi, J. Sol. Energy Mater. Sol. Cells 2013, 117, 174. doi: 10.1016/j.solmat.2013.05.042

    7. [7]

      (7) lin, R.; Ferré, R.; Turcu, M.; Harder, N. P. Sol. Energy Mater. Sol. Cells 2012, 106, 47. doi: 10.1016/j.solmat.2012.06.001

    8. [8]

      (8) Gielis, J.; Van Den Oever, P.; Hoex, B.; Van De Sanden, M.; Kessels, W. Phys. Rev. B 2008, 77 (20), 205329. doi: 10.1103/PhysRevB.77.205329

    9. [9]

      (9) Descoeudres, A.; Barraud, L.; DeWolf, S.; Strahm, B.; Lachenal, D.; Guérin, C.; Holman, Z.; Zicarelli, F.; Demaurex, B.; Seif, J. Appl. Phys. Lett. 2011, 99 (12), 123506. doi: 10.1063/1.3641899

    10. [10]

      (10) Mews, M.; Schulze, T. F.; Mingirulli, N.; Korte, L. Appl. Phys. Lett. 2013, 102 (12), 122106. doi: 10.1063/1.4798292

    11. [11]

      (11) Qiao, Z.; Xie, X.; Hao, Q.; Wen, D.; Xue, J.; Liu, C. Appl. Surf. Sci. 2015, 324, 152. doi: 10.1016/j.apsusc.2014.10.091

    12. [12]

      (12) Dong, L. L.; Wang, Y. Y.; Tong, X. L.; Jin, G. Q.; Guo, X. Y. Acta Phys. -Chim. Sin. 2014, 30 (1), 135. [董莉莉, 王英勇, 童希立, 靳国强, 郭向云. 物理化学学报, 2014, 30 (1), 135.] doi: 10.3866/PKU.WHXB201311052

    13. [13]

      (13) Kaneko, T.; Wakagi, M.; Onisawa, K. I.; Minemura, T. Appl. Phys. Lett. 1994, 64 (14), 1865. doi: 10.1063/1.111781

    14. [14]

      (14) He, Y.; Yin, C.; Cheng, G.; Wang, L.; Liu, X.; Hu, G. J. Appl. Phys. 1994, 75 (2), 797. doi: 10.1063/1.356432

    15. [15]

      (15) Matsuda, A. Thin Solid Films 1999, 337 (1), 1.

    16. [16]

      (16) Tsai, C.; Anderson, G.; Thompson, R.; Wacker, B. J. Non-Cryst. Solids 1989, 114, 151. doi: 10.1016/0022-3093(89)90096-3

    17. [17]

      (17) pe, J.; Kumar, S.; Sudhakar, S.; Lodhi, K.; Rauthan, C.; Srivastava, P. Journal of Alloys and Compounds 2013, 577, 710. doi: 10.1016/j.jallcom.2013.05.142

    18. [18]

      (18) Kroll, U.; Meier, J.; Shah, A.; Mikhailov, S.; Weber, J. J. Appl. Phys. 1996, 80 (9), 4971. doi: 10.1063/1.363541

    19. [19]

      (19) Zhang, S.; Liao, X.; Raniero, L.; Fortunato, E.; Xu, Y.; Kong, G.; Aguas, H.; Ferreira, I.; Martins, R. Sol. Energy Mater. Sol. Cells 2006, 90 (18), 3001.

    20. [20]

      (20) Ray, S.; Mukhopadhyay, S.; Jana, T.; Carius, R. J. Non-Cryst. Solids 2002, 299, 761.

    21. [21]

      (21) Chang, T. H.; Chang, J. Y.; Chu, Y. H.; Lee, C. C.; Chen, I. C.; Li, T. Surf. Coat. Technol. 2013, 231, 604. doi: 10.1016/j.surfcoat.2012.10.008

    22. [22]

      (22) Bakr, N.; Funde, A.; Waman, V.; Kamble, M.; Hawaldar, R.; Amalnerkar, D.; Sathe, V.; savi, S.; Jadkar, S. J. Phys. Chem. Solids 2011, 72 (6), 685. doi: 10.1016/j.jpcs.2011.02.019

    23. [23]

      (23) Waman, V.; Kamble, M.; Pramod, M.; Funde, A.; Sathe, V.; savi, S.; Jadkar, S. In Structural and Optical Investigations of nc-Si:H Thin Films Prepared by Hot-Wire Method; American Institute of Physics Conference Series, 2011; pp 155-157.

    24. [24]

      (24) VavruHková, V.; Müllerová, J.; Srnánek, R.; Šutta, P. Vacuum 2009, 84 (1), 123. doi: 10.1016/j.vacuum.2009.05.022

    25. [25]

      (25) Zhao, L.; Diao, H.W.; Zeng, X. B.; Zhou, C. L.; Li, H. L.; Wang, W. J. Study on the Passivation Effect of the Crystalline Silicon Thin Film Surface. In Proceeding of 10th Solar Photovoltaic Conference-Welcome to Solar PV New Era; Zhejiang University Press: Hangzhou, 2008; pp 64-67. [赵雷, 刁宏伟, 曾湘波, 周春兰, 李海玲, 王文静. 晶硅表面薄膜硅钝化效果研究. In 第十届中国太阳能光伏会议论文集: 迎接光伏发电新时代, 杭州: 浙江大学出版社, 2008: 64-67.]

    26. [26]

      (26) Jensen, N.; Hausner, R.; Bergmann, R.; Werner, J.; Rau, U. Prog. Photovoltaics Res. Appl. 2002, 10 (1), 1.


  • 加载中
    1. [1]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    2. [2]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    3. [3]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    4. [4]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    5. [5]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    6. [6]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    7. [7]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    8. [8]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    9. [9]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    10. [10]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    11. [11]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    12. [12]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    13. [13]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    14. [14]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    15. [15]

      Yanhui Sun Junmin Nan Guozheng Ma Xiaoxi Zuo Guoliang Li Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023

    16. [16]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    17. [17]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    18. [18]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    19. [19]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    20. [20]

      Jiaqi Chen Shuwei Chen Suocai Ren Yue Sun Chunhui Luan Xu Wu . Exploring the People-Centered Safety Construction Model in Basic Chemistry Laboratories: A Case Study in Analytical Chemistry Laboratories. University Chemistry, 2024, 39(7): 264-271. doi: 10.3866/PKU.DXHX202311009

Metrics
  • PDF Downloads(349)
  • Abstract views(875)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return