Citation: Lü Ye-Qing, ZHENG Shi-Li, WANG Shao-Na, DU Hao, ZHANG Yi. Structure and Diffusivity of Oxygen in Concentrated Alkali-Metal Hydroxide Solutions: A Molecular Dynamics Simulation Study[J]. Acta Physico-Chimica Sinica, ;2015, 31(6): 1045-1053. doi: 10.3866/PKU.WHXB201504071 shu

Structure and Diffusivity of Oxygen in Concentrated Alkali-Metal Hydroxide Solutions: A Molecular Dynamics Simulation Study

  • Received Date: 24 December 2014
    Available Online: 7 April 2015

    Fund Project: 国家自然科学基金(51274179) (51274179)国家重点基础研究发展规划项目(973)(2013CB632601)资助 (973)(2013CB632601)

  • Molecular dynamics simulations of oxygen molecules in NaOH and KOH solutions at different temperatures (25-120 ℃) and concentrations (1:100-1:5, molar ratios) were performed in this study. The interactions of oxygen molecules with the surrounding solvent and solute were clarified by considering the solvent-solvent, oxygen-solvent, and oxygen-solute radial distribution functions. The self-diffusion coefficients of the oxygen molecules and the solute were both determined by analyzing the mean-squared displacement (MSD) curves, using Einstein's relationship. It was concluded that at all concentrations, the diffusion coefficient of oxygen in NaOH solution is smaller than that in the corresponding KOH solution. The diffusion coefficients for hydroxide, Na+, and K+ decrease with increasing solute concentration, following similar trends to those of oxygen. The oxygen diffusion coefficient obtained in this study is in od agreement with the reported experimental value, suggesting that MSD is an attractive approach to study the oxygen diffusion behavior in strong alkaline solutions at elevated temperatures, which are experimentally extremely challenging.

  • 加载中
    1. [1]

      (1) Gubbins, K. E.; Walker, R. D. Journal of the Electrochemical Society 1965, 112 (5), 469. doi: 10.1149/1.2423575

    2. [2]

      (2) Case, B. Electrochimica Acta 1973, 18 (4), 293. doi: 10.1016/0013-4686(73)80031-3

    3. [3]

      (3) Wang, Z. H.; Zheng, S. L.; Wang, S. N.; Liu, B.; Wang, D.W.; Du, H.; Zhang, Y. Trans. Nonferrous Met. Soc. China 2014, 24(5), 1273. doi: 10.1016/S1003-6326(14)63189-7

    4. [4]

      (4) Zhang, Y.; Li, Z. H.; Qi, T.; Wang, Z. K.; Zheng, S. L. Chinese Journal of Chemistry 1999, 17 (3), 258." target=_blank>10.1016/S1003-6326(14)63189-7 (4) Zhang, Y.; Li, Z. H.; Qi, T.; Wang, Z. K.; Zheng, S. L. Chinese Journal of Chemistry 1999, 17 (3), 258.

    5. [5]

      (5) Zhang, Y. J.; Qi, T.; Zhang, Y. Hydrometallurgy 2009, 96, 52. doi: 10.1016/j.hydromet.2008.08.002

    6. [6]

      (6) Wang, S.; Zheng, S. L.; Zhang, Y. F.; Xu, H. B.; Zhang, Y. The Chinese Journal of Process Engneering 2008, 8 (6), 1148.

    7. [7]

      (7) Jin, W.; Du, H.; Zheng, S. L.; Xu, H.; Zhang, Y. The Journal of Physical Chemistry B 2010, 114 (19), 6542.

    8. [8]

      (8) Ratcliff, G. A.; Holdcroft, J. G. Trans. Inst. Chem. Eng. 1963, 41 (10), 315.

    9. [9]

      (9) Gubbins, K. E.; Bhatia, K. K.; Walker, R. D. AIChE Journal 1966, 12 (3), 548. doi: 10.1002/(ISSN)1547-5905

    10. [10]

      (10) Tham, M. K.; Walker, R. D.; Gubbins, K. E. The Journal of Physical Chemistry 1970, 74 (8), 1747. doi: 10.1021/j100703a015

    11. [11]

      (11) Davis, R. E.; Horvath, G. L.; Tobias, C.W. Electrochimica Acta 1967, 12 (3), 287. doi: 10.1016/0013-4686(67)80007-0

    12. [12]

      (12) Hu, G. L. Journal of Shen Yang Institute of Chemical Technology 1998, 12 (4), 241.

    13. [13]

      (13) Thapa, S. K.; Adhikari, N. P. International Journal of Modern Physics B 2013, 27 (8), 1.

    14. [14]

      (14) Takeuchi, H.; Okazaki, K. The Journal of Chemical Physics 1990, 92 (9), 5643. doi: 10.1063/1.458496

    15. [15]

      (15) Muller-Plathe, F.; Rogers, S. C.; Gunsteren, W. F. The Journal of Chemical Physics 1993, 98 (12), 9895. doi: 10.1063/1.464369

    16. [16]

      (16) Smith, W.; Forester, T. R. Journal of Molecular Graphics 1996, 14 (3), 136. doi: 10.1016/S0263-7855(96)00043-4

    17. [17]

      (17) Mancinelli, R.; Botti, A.; Bruni, F.; Ricci, M. A.; Soper, A. K. Physical Chemistry Chemical Physics 2007, 9 (23), 2959. doi: 10.1039/b701855j

    18. [18]

      (18) Imberti, S.; Botti, A.; Bruni, F.; Cappa, G.; Ricci, M. A.; Soper, A. K. The Journal of Chemical Physics 2005, 122 (19), 194509. doi: 10.1063/1.1899147

    19. [19]

      (19) Botti, A.; Bruni, F.; Imberti, S.; Ricci, M. A.; Soper, A. K. The Journal of Chemical Physics 2004, 120 (21), 10154. doi: 10.1063/1.1705572

    20. [20]

      (20) Zhou, J.; Lu, X. H.; Wang, Y. R. Journal of Chemical Engineering of Chinese Universities 2000, 1 (14), 1.

    21. [21]

      (21) Vácha, R.; Megyes, T.; Bakó, I.; Pusztai, L.; Jungwirth, P. The Journal of Physical Chemistry A 2009, 113 (16), 4022.

    22. [22]

      (22) Clementi, E.; Barsotti, R. Chemical Physics Letters 1978, 59 (1), 21. doi: 10.1016/0009-2614(78)85605-X

    23. [23]

      (23) Mezei, M.; Beveridge, D. L. The Journal of Chemical Physics 1981, 74 (12), 6902. doi: 10.1063/1.441101

    24. [24]

      (24) Impey, R.W.; Madden, P. A.; McDonald, I. R. The Journal of Physical Chemistry 1983, 87 (25), 5071. doi: 10.1021/j150643a008

    25. [25]

      (25) Nguyen, H. L.; Adelman, S. A. The Journal of Chemical Physics 1984, 81 (10), 4564. doi: 10.1063/1.447430

    26. [26]

      (26) Marchese, F. T.; Beveridge, D. L. Journal of the American Chemical Society 1984, 106 (13), 3713. doi: 10.1021/ja00325a001

    27. [27]

      (27) Kistenmacher, H.; Popkie, H.; Clementi, E. The Journal of Chemical Physics 1974, 61 (3), 799. doi: 10.1063/1.1682019

    28. [28]

      (28) Chandrasekhar, J.; Spellmeyer, D. C.; Jorgensen, W. L. Journal of the American Chemical Society 1984, 106 (4), 903. doi: 10.1021/ja00316a012

    29. [29]

      (29) Soper, A. K.; Ricci, M. A. Physical Review Letters 2000, 84 (13), 2881. doi: 10.1103/PhysRevLett.84.2881

    30. [30]

      (30) Okhulkov, A. V.; Demianets, Y. N.; rbaty, Y. E. The Journal of Chemical Physics 1994, 100 (2), 1578. doi: 10.1063/1.466584

    31. [31]

      (31) Bosio, L.; Chen, S. H.; Teixeira, J. Physical Review A 1983, 27 (3), 1468. doi: 10.1103/PhysRevA.27.1468

    32. [32]

      (32) Mahler, J.; Persson, I. Inorganic Chemistry 2011, 51 (1), 425.

    33. [33]

      (33) Chen, B.; Park, J. M.; Ivanov, I.; Tabacchi, G.; Klein, M. L.; Parrinello, M. Journal of the American Chemical Society 2002, 124 (29), 8534. doi: 10.1021/ja020350g

    34. [34]

      (34) Sokol, M.; Dawid, A.; Dendzik, Z.; Gburski, Z. Journal of Molecular Structure 2004, 704 (1), 341.

    35. [35]

      (35) Koneshan, S.; Rasaiah, J. C.; Lynden-Bell, R. M.; Lee, S. H. The Journal of Physical Chemistry B 1998, 102 (21), 4193. doi: 10.1021/jp980642x

    36. [36]

      (36) Chowdhuri, S.; Chandra, A. The Journal of Chemical Physics 2001, 115 (8), 3732. doi: 10.1063/1.1387447

    37. [37]

      (37) Du, H.; Rasaiah, J. C.; Miller, J. D. The Journal of Physical Chemistry B 2007, 111 (1), 209. doi: 10.1021/jp064659o

    38. [38]

      (38) Baird, M. H.; Hamielec, A. E. The Canadian Journal of Chemical Engineering 1962, 40 (3), 119. doi: 10.1002/cjce. v40:3

    39. [39]

      (39) Jordan, J.; Ackerman, E.; Berger, R. L. Journal of the American Chemical Society 1956, 78 (13), 2979. doi: 10.1021/ja01594a015

    40. [40]

      (40) Ferrell, R. T.; Himmelblau, D. M. Journal of Chemical and Engineering Data 1967, 12 (1), 111. doi: 10.1021/je60032a036

    41. [41]

      (41) Vivian, J. E.; King, C. J. AIChE Journal 1964, 10 (2), 220.

    42. [42]

      (42) Davidson, J. F.; Cullen, E. J. Trans. Inst. Chem. Eng. 1957, 35, 51.

    43. [43]

      (43) Wise, D. L.; Houghton, G. Chemical Engineering Science 1966, 21 (11), 999. doi: 10.1016/0009-2509(66)85096-0

    44. [44]

      (44) Zhang, X.; Leddy, J.; Bard, A. J. Journal of the American Chemical Society 1985, 107 (12), 3719. doi: 10.1021/ja00298a054

    45. [45]

      (45) Li, C. M.; Chang, P. The Journal of Chemical Physics 1955, 23 (3), 518. doi: 10.1063/1.1742022

    46. [46]

      (46) Song, H. L.; Jayendran, C. R. J. Phys. Chem. 1996, 100 (4), 1420. doi: 10.1021/jp953050c

    47. [47]

      (47) Obst, S.; Bradaczek, H. J. Phys. Chem. 1996, 100 (39), 15677. doi: 10.1021/jp961384b


  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    4. [4]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    5. [5]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    6. [6]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    7. [7]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    8. [8]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    9. [9]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    10. [10]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    11. [11]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    12. [12]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    13. [13]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    14. [14]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    15. [15]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    16. [16]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    17. [17]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    18. [18]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    19. [19]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    20. [20]

      Peifeng Su Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087

Metrics
  • PDF Downloads(325)
  • Abstract views(825)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return