Citation:
Lü Ye-Qing, ZHENG Shi-Li, WANG Shao-Na, DU Hao, ZHANG Yi. Structure and Diffusivity of Oxygen in Concentrated Alkali-Metal Hydroxide Solutions: A Molecular Dynamics Simulation Study[J]. Acta Physico-Chimica Sinica,
;2015, 31(6): 1045-1053.
doi:
10.3866/PKU.WHXB201504071
-
Molecular dynamics simulations of oxygen molecules in NaOH and KOH solutions at different temperatures (25-120 ℃) and concentrations (1:100-1:5, molar ratios) were performed in this study. The interactions of oxygen molecules with the surrounding solvent and solute were clarified by considering the solvent-solvent, oxygen-solvent, and oxygen-solute radial distribution functions. The self-diffusion coefficients of the oxygen molecules and the solute were both determined by analyzing the mean-squared displacement (MSD) curves, using Einstein's relationship. It was concluded that at all concentrations, the diffusion coefficient of oxygen in NaOH solution is smaller than that in the corresponding KOH solution. The diffusion coefficients for hydroxide, Na+, and K+ decrease with increasing solute concentration, following similar trends to those of oxygen. The oxygen diffusion coefficient obtained in this study is in od agreement with the reported experimental value, suggesting that MSD is an attractive approach to study the oxygen diffusion behavior in strong alkaline solutions at elevated temperatures, which are experimentally extremely challenging.
-
Keywords:
-
Molecular dynamics simulation
, - Oxygen,
- NaOH,
- KOH,
- Diffusion coefficient
-
-
-
-
[1]
(1) Gubbins, K. E.; Walker, R. D. Journal of the Electrochemical Society 1965, 112 (5), 469. doi: 10.1149/1.2423575
-
[2]
(2) Case, B. Electrochimica Acta 1973, 18 (4), 293. doi: 10.1016/0013-4686(73)80031-3
-
[3]
(3) Wang, Z. H.; Zheng, S. L.; Wang, S. N.; Liu, B.; Wang, D.W.; Du, H.; Zhang, Y. Trans. Nonferrous Met. Soc. China 2014, 24(5), 1273. doi: 10.1016/S1003-6326(14)63189-7
-
[4]
(4) Zhang, Y.; Li, Z. H.; Qi, T.; Wang, Z. K.; Zheng, S. L. Chinese Journal of Chemistry 1999, 17 (3), 258." target=_blank>10.1016/S1003-6326(14)63189-7 (4) Zhang, Y.; Li, Z. H.; Qi, T.; Wang, Z. K.; Zheng, S. L. Chinese Journal of Chemistry 1999, 17 (3), 258.
-
[5]
(5) Zhang, Y. J.; Qi, T.; Zhang, Y. Hydrometallurgy 2009, 96, 52. doi: 10.1016/j.hydromet.2008.08.002
-
[6]
(6) Wang, S.; Zheng, S. L.; Zhang, Y. F.; Xu, H. B.; Zhang, Y. The Chinese Journal of Process Engneering 2008, 8 (6), 1148.
-
[7]
(7) Jin, W.; Du, H.; Zheng, S. L.; Xu, H.; Zhang, Y. The Journal of Physical Chemistry B 2010, 114 (19), 6542.
-
[8]
(8) Ratcliff, G. A.; Holdcroft, J. G. Trans. Inst. Chem. Eng. 1963, 41 (10), 315.
-
[9]
(9) Gubbins, K. E.; Bhatia, K. K.; Walker, R. D. AIChE Journal 1966, 12 (3), 548. doi: 10.1002/(ISSN)1547-5905
-
[10]
(10) Tham, M. K.; Walker, R. D.; Gubbins, K. E. The Journal of Physical Chemistry 1970, 74 (8), 1747. doi: 10.1021/j100703a015
-
[11]
(11) Davis, R. E.; Horvath, G. L.; Tobias, C.W. Electrochimica Acta 1967, 12 (3), 287. doi: 10.1016/0013-4686(67)80007-0
-
[12]
(12) Hu, G. L. Journal of Shen Yang Institute of Chemical Technology 1998, 12 (4), 241.
-
[13]
(13) Thapa, S. K.; Adhikari, N. P. International Journal of Modern Physics B 2013, 27 (8), 1.
-
[14]
(14) Takeuchi, H.; Okazaki, K. The Journal of Chemical Physics 1990, 92 (9), 5643. doi: 10.1063/1.458496
-
[15]
(15) Muller-Plathe, F.; Rogers, S. C.; Gunsteren, W. F. The Journal of Chemical Physics 1993, 98 (12), 9895. doi: 10.1063/1.464369
-
[16]
(16) Smith, W.; Forester, T. R. Journal of Molecular Graphics 1996, 14 (3), 136. doi: 10.1016/S0263-7855(96)00043-4
-
[17]
(17) Mancinelli, R.; Botti, A.; Bruni, F.; Ricci, M. A.; Soper, A. K. Physical Chemistry Chemical Physics 2007, 9 (23), 2959. doi: 10.1039/b701855j
-
[18]
(18) Imberti, S.; Botti, A.; Bruni, F.; Cappa, G.; Ricci, M. A.; Soper, A. K. The Journal of Chemical Physics 2005, 122 (19), 194509. doi: 10.1063/1.1899147
-
[19]
(19) Botti, A.; Bruni, F.; Imberti, S.; Ricci, M. A.; Soper, A. K. The Journal of Chemical Physics 2004, 120 (21), 10154. doi: 10.1063/1.1705572
-
[20]
(20) Zhou, J.; Lu, X. H.; Wang, Y. R. Journal of Chemical Engineering of Chinese Universities 2000, 1 (14), 1.
-
[21]
(21) Vácha, R.; Megyes, T.; Bakó, I.; Pusztai, L.; Jungwirth, P. The Journal of Physical Chemistry A 2009, 113 (16), 4022.
-
[22]
(22) Clementi, E.; Barsotti, R. Chemical Physics Letters 1978, 59 (1), 21. doi: 10.1016/0009-2614(78)85605-X
-
[23]
(23) Mezei, M.; Beveridge, D. L. The Journal of Chemical Physics 1981, 74 (12), 6902. doi: 10.1063/1.441101
-
[24]
(24) Impey, R.W.; Madden, P. A.; McDonald, I. R. The Journal of Physical Chemistry 1983, 87 (25), 5071. doi: 10.1021/j150643a008
-
[25]
(25) Nguyen, H. L.; Adelman, S. A. The Journal of Chemical Physics 1984, 81 (10), 4564. doi: 10.1063/1.447430
-
[26]
(26) Marchese, F. T.; Beveridge, D. L. Journal of the American Chemical Society 1984, 106 (13), 3713. doi: 10.1021/ja00325a001
-
[27]
(27) Kistenmacher, H.; Popkie, H.; Clementi, E. The Journal of Chemical Physics 1974, 61 (3), 799. doi: 10.1063/1.1682019
-
[28]
(28) Chandrasekhar, J.; Spellmeyer, D. C.; Jorgensen, W. L. Journal of the American Chemical Society 1984, 106 (4), 903. doi: 10.1021/ja00316a012
-
[29]
(29) Soper, A. K.; Ricci, M. A. Physical Review Letters 2000, 84 (13), 2881. doi: 10.1103/PhysRevLett.84.2881
-
[30]
(30) Okhulkov, A. V.; Demianets, Y. N.; rbaty, Y. E. The Journal of Chemical Physics 1994, 100 (2), 1578. doi: 10.1063/1.466584
-
[31]
(31) Bosio, L.; Chen, S. H.; Teixeira, J. Physical Review A 1983, 27 (3), 1468. doi: 10.1103/PhysRevA.27.1468
-
[32]
(32) Mahler, J.; Persson, I. Inorganic Chemistry 2011, 51 (1), 425.
-
[33]
(33) Chen, B.; Park, J. M.; Ivanov, I.; Tabacchi, G.; Klein, M. L.; Parrinello, M. Journal of the American Chemical Society 2002, 124 (29), 8534. doi: 10.1021/ja020350g
-
[34]
(34) Sokol, M.; Dawid, A.; Dendzik, Z.; Gburski, Z. Journal of Molecular Structure 2004, 704 (1), 341.
-
[35]
(35) Koneshan, S.; Rasaiah, J. C.; Lynden-Bell, R. M.; Lee, S. H. The Journal of Physical Chemistry B 1998, 102 (21), 4193. doi: 10.1021/jp980642x
-
[36]
(36) Chowdhuri, S.; Chandra, A. The Journal of Chemical Physics 2001, 115 (8), 3732. doi: 10.1063/1.1387447
-
[37]
(37) Du, H.; Rasaiah, J. C.; Miller, J. D. The Journal of Physical Chemistry B 2007, 111 (1), 209. doi: 10.1021/jp064659o
-
[38]
(38) Baird, M. H.; Hamielec, A. E. The Canadian Journal of Chemical Engineering 1962, 40 (3), 119. doi: 10.1002/cjce. v40:3
-
[39]
(39) Jordan, J.; Ackerman, E.; Berger, R. L. Journal of the American Chemical Society 1956, 78 (13), 2979. doi: 10.1021/ja01594a015
-
[40]
(40) Ferrell, R. T.; Himmelblau, D. M. Journal of Chemical and Engineering Data 1967, 12 (1), 111. doi: 10.1021/je60032a036
-
[41]
(41) Vivian, J. E.; King, C. J. AIChE Journal 1964, 10 (2), 220.
-
[42]
(42) Davidson, J. F.; Cullen, E. J. Trans. Inst. Chem. Eng. 1957, 35, 51.
-
[43]
(43) Wise, D. L.; Houghton, G. Chemical Engineering Science 1966, 21 (11), 999. doi: 10.1016/0009-2509(66)85096-0
-
[44]
(44) Zhang, X.; Leddy, J.; Bard, A. J. Journal of the American Chemical Society 1985, 107 (12), 3719. doi: 10.1021/ja00298a054
-
[45]
(45) Li, C. M.; Chang, P. The Journal of Chemical Physics 1955, 23 (3), 518. doi: 10.1063/1.1742022
-
[46]
(46) Song, H. L.; Jayendran, C. R. J. Phys. Chem. 1996, 100 (4), 1420. doi: 10.1021/jp953050c
-
[47]
(47) Obst, S.; Bradaczek, H. J. Phys. Chem. 1996, 100 (39), 15677. doi: 10.1021/jp961384b
-
[1]
-
-
-
[1]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[2]
Zhi Zhou , Yu-E Lian , Yuqing Li , Hui Gao , Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104
-
[3]
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024
-
[4]
Zhenming Xu , Yibo Wang , Zhenhui Liu , Duo Chen , Mingbo Zheng , Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096
-
[5]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[6]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
-
[7]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[8]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
-
[9]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[10]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[11]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[12]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[13]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[14]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[15]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[16]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . 基于激发态手性铜催化的烯烃E→Z异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[17]
Yaping Li , Sai An , Aiqing Cao , Shilong Li , Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185
-
[18]
Pingping Zhu , Yongjun Xie , Yuanping Yi , Yu Huang , Qiang Zhou , Shiyan Xiao , Haiyang Yang , Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063
-
[19]
Xin Lv , Hongxing Zhang , Kaibo Duan , Wenhui Dai , Zhihui Wen , Wei Guo , Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090
-
[20]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[1]
Metrics
- PDF Downloads(325)
- Abstract views(909)
- HTML views(51)