Citation: Lü Ye-Qing, ZHENG Shi-Li, WANG Shao-Na, DU Hao, ZHANG Yi. Structure and Diffusivity of Oxygen in Concentrated Alkali-Metal Hydroxide Solutions: A Molecular Dynamics Simulation Study[J]. Acta Physico-Chimica Sinica, ;2015, 31(6): 1045-1053. doi: 10.3866/PKU.WHXB201504071
-
Molecular dynamics simulations of oxygen molecules in NaOH and KOH solutions at different temperatures (25-120 ℃) and concentrations (1:100-1:5, molar ratios) were performed in this study. The interactions of oxygen molecules with the surrounding solvent and solute were clarified by considering the solvent-solvent, oxygen-solvent, and oxygen-solute radial distribution functions. The self-diffusion coefficients of the oxygen molecules and the solute were both determined by analyzing the mean-squared displacement (MSD) curves, using Einstein's relationship. It was concluded that at all concentrations, the diffusion coefficient of oxygen in NaOH solution is smaller than that in the corresponding KOH solution. The diffusion coefficients for hydroxide, Na+, and K+ decrease with increasing solute concentration, following similar trends to those of oxygen. The oxygen diffusion coefficient obtained in this study is in od agreement with the reported experimental value, suggesting that MSD is an attractive approach to study the oxygen diffusion behavior in strong alkaline solutions at elevated temperatures, which are experimentally extremely challenging.
-
Keywords:
-
Molecular dynamics simulation
, - Oxygen,
- NaOH,
- KOH,
- Diffusion coefficient
-
-
-
[1]
(1) Gubbins, K. E.; Walker, R. D. Journal of the Electrochemical Society 1965, 112 (5), 469. doi: 10.1149/1.2423575
-
[2]
(2) Case, B. Electrochimica Acta 1973, 18 (4), 293. doi: 10.1016/0013-4686(73)80031-3
-
[3]
(3) Wang, Z. H.; Zheng, S. L.; Wang, S. N.; Liu, B.; Wang, D.W.; Du, H.; Zhang, Y. Trans. Nonferrous Met. Soc. China 2014, 24(5), 1273. doi: 10.1016/S1003-6326(14)63189-7
-
[4]
(4) Zhang, Y.; Li, Z. H.; Qi, T.; Wang, Z. K.; Zheng, S. L. Chinese Journal of Chemistry 1999, 17 (3), 258." target=_blank>10.1016/S1003-6326(14)63189-7 (4) Zhang, Y.; Li, Z. H.; Qi, T.; Wang, Z. K.; Zheng, S. L. Chinese Journal of Chemistry 1999, 17 (3), 258.
-
[5]
(5) Zhang, Y. J.; Qi, T.; Zhang, Y. Hydrometallurgy 2009, 96, 52. doi: 10.1016/j.hydromet.2008.08.002
-
[6]
(6) Wang, S.; Zheng, S. L.; Zhang, Y. F.; Xu, H. B.; Zhang, Y. The Chinese Journal of Process Engneering 2008, 8 (6), 1148.
-
[7]
(7) Jin, W.; Du, H.; Zheng, S. L.; Xu, H.; Zhang, Y. The Journal of Physical Chemistry B 2010, 114 (19), 6542.
-
[8]
(8) Ratcliff, G. A.; Holdcroft, J. G. Trans. Inst. Chem. Eng. 1963, 41 (10), 315.
-
[9]
(9) Gubbins, K. E.; Bhatia, K. K.; Walker, R. D. AIChE Journal 1966, 12 (3), 548. doi: 10.1002/(ISSN)1547-5905
-
[10]
(10) Tham, M. K.; Walker, R. D.; Gubbins, K. E. The Journal of Physical Chemistry 1970, 74 (8), 1747. doi: 10.1021/j100703a015
-
[11]
(11) Davis, R. E.; Horvath, G. L.; Tobias, C.W. Electrochimica Acta 1967, 12 (3), 287. doi: 10.1016/0013-4686(67)80007-0
-
[12]
(12) Hu, G. L. Journal of Shen Yang Institute of Chemical Technology 1998, 12 (4), 241.
-
[13]
(13) Thapa, S. K.; Adhikari, N. P. International Journal of Modern Physics B 2013, 27 (8), 1.
-
[14]
(14) Takeuchi, H.; Okazaki, K. The Journal of Chemical Physics 1990, 92 (9), 5643. doi: 10.1063/1.458496
-
[15]
(15) Muller-Plathe, F.; Rogers, S. C.; Gunsteren, W. F. The Journal of Chemical Physics 1993, 98 (12), 9895. doi: 10.1063/1.464369
-
[16]
(16) Smith, W.; Forester, T. R. Journal of Molecular Graphics 1996, 14 (3), 136. doi: 10.1016/S0263-7855(96)00043-4
-
[17]
(17) Mancinelli, R.; Botti, A.; Bruni, F.; Ricci, M. A.; Soper, A. K. Physical Chemistry Chemical Physics 2007, 9 (23), 2959. doi: 10.1039/b701855j
-
[18]
(18) Imberti, S.; Botti, A.; Bruni, F.; Cappa, G.; Ricci, M. A.; Soper, A. K. The Journal of Chemical Physics 2005, 122 (19), 194509. doi: 10.1063/1.1899147
-
[19]
(19) Botti, A.; Bruni, F.; Imberti, S.; Ricci, M. A.; Soper, A. K. The Journal of Chemical Physics 2004, 120 (21), 10154. doi: 10.1063/1.1705572
-
[20]
(20) Zhou, J.; Lu, X. H.; Wang, Y. R. Journal of Chemical Engineering of Chinese Universities 2000, 1 (14), 1.
-
[21]
(21) Vácha, R.; Megyes, T.; Bakó, I.; Pusztai, L.; Jungwirth, P. The Journal of Physical Chemistry A 2009, 113 (16), 4022.
-
[22]
(22) Clementi, E.; Barsotti, R. Chemical Physics Letters 1978, 59 (1), 21. doi: 10.1016/0009-2614(78)85605-X
-
[23]
(23) Mezei, M.; Beveridge, D. L. The Journal of Chemical Physics 1981, 74 (12), 6902. doi: 10.1063/1.441101
-
[24]
(24) Impey, R.W.; Madden, P. A.; McDonald, I. R. The Journal of Physical Chemistry 1983, 87 (25), 5071. doi: 10.1021/j150643a008
-
[25]
(25) Nguyen, H. L.; Adelman, S. A. The Journal of Chemical Physics 1984, 81 (10), 4564. doi: 10.1063/1.447430
-
[26]
(26) Marchese, F. T.; Beveridge, D. L. Journal of the American Chemical Society 1984, 106 (13), 3713. doi: 10.1021/ja00325a001
-
[27]
(27) Kistenmacher, H.; Popkie, H.; Clementi, E. The Journal of Chemical Physics 1974, 61 (3), 799. doi: 10.1063/1.1682019
-
[28]
(28) Chandrasekhar, J.; Spellmeyer, D. C.; Jorgensen, W. L. Journal of the American Chemical Society 1984, 106 (4), 903. doi: 10.1021/ja00316a012
-
[29]
(29) Soper, A. K.; Ricci, M. A. Physical Review Letters 2000, 84 (13), 2881. doi: 10.1103/PhysRevLett.84.2881
-
[30]
(30) Okhulkov, A. V.; Demianets, Y. N.; rbaty, Y. E. The Journal of Chemical Physics 1994, 100 (2), 1578. doi: 10.1063/1.466584
-
[31]
(31) Bosio, L.; Chen, S. H.; Teixeira, J. Physical Review A 1983, 27 (3), 1468. doi: 10.1103/PhysRevA.27.1468
-
[32]
(32) Mahler, J.; Persson, I. Inorganic Chemistry 2011, 51 (1), 425.
-
[33]
(33) Chen, B.; Park, J. M.; Ivanov, I.; Tabacchi, G.; Klein, M. L.; Parrinello, M. Journal of the American Chemical Society 2002, 124 (29), 8534. doi: 10.1021/ja020350g
-
[34]
(34) Sokol, M.; Dawid, A.; Dendzik, Z.; Gburski, Z. Journal of Molecular Structure 2004, 704 (1), 341.
-
[35]
(35) Koneshan, S.; Rasaiah, J. C.; Lynden-Bell, R. M.; Lee, S. H. The Journal of Physical Chemistry B 1998, 102 (21), 4193. doi: 10.1021/jp980642x
-
[36]
(36) Chowdhuri, S.; Chandra, A. The Journal of Chemical Physics 2001, 115 (8), 3732. doi: 10.1063/1.1387447
-
[37]
(37) Du, H.; Rasaiah, J. C.; Miller, J. D. The Journal of Physical Chemistry B 2007, 111 (1), 209. doi: 10.1021/jp064659o
-
[38]
(38) Baird, M. H.; Hamielec, A. E. The Canadian Journal of Chemical Engineering 1962, 40 (3), 119. doi: 10.1002/cjce. v40:3
-
[39]
(39) Jordan, J.; Ackerman, E.; Berger, R. L. Journal of the American Chemical Society 1956, 78 (13), 2979. doi: 10.1021/ja01594a015
-
[40]
(40) Ferrell, R. T.; Himmelblau, D. M. Journal of Chemical and Engineering Data 1967, 12 (1), 111. doi: 10.1021/je60032a036
-
[41]
(41) Vivian, J. E.; King, C. J. AIChE Journal 1964, 10 (2), 220.
-
[42]
(42) Davidson, J. F.; Cullen, E. J. Trans. Inst. Chem. Eng. 1957, 35, 51.
-
[43]
(43) Wise, D. L.; Houghton, G. Chemical Engineering Science 1966, 21 (11), 999. doi: 10.1016/0009-2509(66)85096-0
-
[44]
(44) Zhang, X.; Leddy, J.; Bard, A. J. Journal of the American Chemical Society 1985, 107 (12), 3719. doi: 10.1021/ja00298a054
-
[45]
(45) Li, C. M.; Chang, P. The Journal of Chemical Physics 1955, 23 (3), 518. doi: 10.1063/1.1742022
-
[46]
(46) Song, H. L.; Jayendran, C. R. J. Phys. Chem. 1996, 100 (4), 1420. doi: 10.1021/jp953050c
-
[47]
(47) Obst, S.; Bradaczek, H. J. Phys. Chem. 1996, 100 (39), 15677. doi: 10.1021/jp961384b
-
[1]
-
-
[1]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[2]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[3]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[4]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[5]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[6]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[7]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[8]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[9]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[10]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[11]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[12]
Pingping Zhu , Yongjun Xie , Yuanping Yi , Yu Huang , Qiang Zhou , Shiyan Xiao , Haiyang Yang , Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063
-
[13]
Xin Lv , Hongxing Zhang , Kaibo Duan , Wenhui Dai , Zhihui Wen , Wei Guo , Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090
-
[14]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[15]
Donghui PAN , Yuping XU , Xinyu WANG , Lizhen WANG , Junjie YAN , Dongjian SHI , Min YANG , Mingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468
-
[16]
Peng GENG , Guangcan XIANG , Wen ZHANG , Haichuang LAN , Shuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155
-
[17]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[18]
Yong Shu , Xing Chen , Sai Duan , Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102
-
[19]
Xiaohui Li , Ze Zhang , Jingyi Cui , Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027
-
[20]
Peifeng Su , Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087
-
[1]
Metrics
- PDF Downloads(325)
- Abstract views(826)
- HTML views(43)