Citation: WANG Ying, YI Hai-Bo, LI Hui-Ji, DAI Qian, CAO Zhi-Wei, LU Yang. Effects of Interactions between Ions and Alanine Polar Groups on Alanine Associations in Saline Solution: Density Functional Theory and Molecular Dynamics Simulation[J]. Acta Physico-Chimica Sinica, ;2015, 31(6): 1035-1044. doi: 10.3866/PKU.WHXB201504031 shu

Effects of Interactions between Ions and Alanine Polar Groups on Alanine Associations in Saline Solution: Density Functional Theory and Molecular Dynamics Simulation

  • Received Date: 22 January 2015
    Available Online: 3 April 2015

    Fund Project: 国家自然科学基金(21073056, J1210040)与湖南省&ldquo (21073056, J1210040)项目(2012)资助 (2012)

  • Density functional theory (DFT) and classical molecular dynamics simulations were used to study the effects of the interactions between zwitterionic alanine and some ions (Na+, Cu2+, Zn2+, and Cl-) in saline solution on the association of alanine molecules. The DFT calculation results show that the association of alanine with these ions can enhance charge separation of zwitterionic alanine. Classical molecular dynamics simulation results also show that three associated structures of zwitterionic alanine molecules are present in alanine aqueous solution, and the associations can be weakened to a certain extent by the interactions between the cations/anions and alanine polar groups. The interaction between a cation and the carboxyl group of alanine can be greatly affected by hydration of the cation in dilute saline solution. The interaction between Cu2+ and alanine is much stronger than that between Na+ and alanine in the gas phase, but the situation is reversed in dilute aqueous solution, because the hydration of Cu2+ is much stronger than that of Na+. In dilute ZnCl2 aqueous solution, the interaction between Zn2+ and the carboxyl group of the alanine molecule is less direct, because of the first hydration shell of Zn2+. However, indirect interactions between Zn2+ and alanine still lead to a decreased association among alanine molecules. In addition, the interactions of cations/anions with alanine not only weaken the association between alanine molecules, but also result in transformation between two typical conformations of associated alanine molecules. The ion concentration affects the conformations of associated cation/anion-alanine species, and associated alanine molecules.

  • 加载中
    1. [1]

      (1) Heaton, A. L.; Bowman, V. N.; Oomens, J.; Steill, J. D.; Armentrout, P. B. J. Phys. Chem. A 2009, 113 (19), 5519. doi: 10.1021/jp9008064

    2. [2]

      (2) Armentrout, P. B.; Armentrout, E. I.; Clark, A. A.; Cooper, T. E.; Stennett, E. M. S.; Carl, D. R. J. Phys. Chem. B 2010, 114 (11), 3927. doi: 10.1021/jp911219u

    3. [3]

      (3) Dunbar, R. C.; Steill, J. D.; Polfer, N. C.; Oomens, J. J. Phys. Chem. B 2009, 113 (31), 10552. doi: 10.1021/jp905060n

    4. [4]

      (4) O'Brien, J. T.; Prell, J. S.; Steill, J. D.; Oomens, J.; Williams, E. R. J. Phys. Chem. A 2008, 112 (43), 10823. doi: 10.1021/jp805787e

    5. [5]

      (5) Prell, J. S.; Demireva, M.; Oomens, J.; Williams, E. R. J. Am. Chem. Soc. 2009, 131 (3), 1232. doi: 10.1021/ja808177z

    6. [6]

      (6) Frossard, E.; Bucher, M.; Mächler, F.; Mozafar, A.; Hurrell, R. J. Sci. Food Agric. 2000, 80, 861.

    7. [7]

      (7) Wang, C. Y.; Guo, J. S.; Tian, J.; Cui, W. L. J. Jilin Medical College 2009, 30 (2), 99. [王春艳, 郭景森, 田晶, 崔万丽. 吉林医药学院学报, 2009, 30 (2), 99.]

    8. [8]

      (8) Wingenfeld, K.; Hellhammer, D. H.; Schmidt, I.; Wagner, D.; Meinlschmidt, G.; Heim, C. J. Psychosom. Obstet. Gynaecol. 2009, 30 (4), 282. doi: 10.3109/01674820903254732

    9. [9]

      (9) Komoroski, R. A.; Pearce, J. M. Magn. Reson. Med. 2008, 60, 21. doi: 10.1002/mrm.v60:1

    10. [10]

      (10) Dong, X. Y.; Du, W. J.; Liu, F. F. Acta Phys. -Chim. Sin. 2012, 28 (11), 2735. [董晓燕, 都文婕, 刘夫锋. 物理化学学报, 2012, 28 (11), 2735.] doi: 10.3866/PKU.WHXB201207162

    11. [11]

      (11) Zhao, Y. P.; Ai, H. Q.; Chen, J. P.; Yang, A. B.; Qi, Z. N. Acta Phys. -Chim. Sin. 2010, 26 (12), 3322. [赵永平, 艾洪奇, 陈金鹏, 杨爱彬, 齐中囡. 物理化学学报, 2010, 26 (12), 3322.] doi: 10.3866/PKU.WHXB20101215

    12. [12]

      (12) Zhu, Y. C.; Wang, E. Q.; Ma, G. L.; Kang, Y. B.; Zhao, L. H.; Liu, Y. Z. Acta Phys. -Chim. Sin. 2014, 30 (1), 1. [朱云城, 王二琼, 马国林, 康彦彪, 赵林泓, 刘扬中. 物理化学学报, 2014, 30 (1), 1.] doi: 10.3866/PKU.WHXB201311263

    13. [13]

      (13) Eyal, A. M.; Bressler, E. Biotechnol. Bioeng. 1993, 41 (3), 287.

    14. [14]

      (14) Jensen, J. H.; rdon, M. S. J. Am. Chem. Soc. 1995, 117 (31), 8159. doi: 10.1021/ja00136a013

    15. [15]

      (15) Hu, C. H.; Shen, M. Z.; Schaefer, H. F., III. J. Am. Chem. Soc. 1993, 115 (7), 2923. doi: 10.1021/ja00060a046

    16. [16]

      (16) Qin, P. H.; Lü, W. C.; Qin, W.; Zhang, W.; Xie, H. Chem. Res. Chin. Univ. 2014, 30 (1), 125. doi: 10.1007/s40242-014-3303-z

    17. [17]

      (17) rdon, M. S.; Jensen, J. H. Accounts Chem. Res. 1996, 29 (11), 536. doi: 10.1021/ar9600594

    18. [18]

      (18) Qiu, X. M.; Lei, Q. F.; Fang, W. J.; Lin, R. S. Acta Chim. Sin. 2009, 67 (7), 607. [邱晓梅, 雷群芳, 方文军, 林瑞森. 化学学报, 2009, 67 (7), 607.]

    19. [19]

      (19) Wyttenbach, T.; Bushnell, J. E.; Bowers, M. T. J. Am. Chem. Soc. 1998, 120 (20), 5098. doi: 10.1021/ja9801238

    20. [20]

      (20) Kushwaha, P. S.; Mishra, P. C. J. Mol. Struct. -Theochem 2001, 549, 229. doi: 10.1016/S0166-1280(01)00423-7

    21. [21]

      (21) Tomé, L. I. N.; Pinho, S. P.; Jorge, M.; mes, J. R. B.; Coutinho, J. A. P. J. Phys. Chem. B 2013, 117, 6116.

    22. [22]

      (22) Carta, R.; Tola, G. J. Chem. Eng. Data 1996, 41 (3), 414. doi: 10.1021/je9501853

    23. [23]

      (23) Marino, T.; Russo, N.; Toscano, M. J. Inorg. Biochem. 2000, 79, 179. doi: 10.1016/S0162-0134(99)00242-1

    24. [24]

      (24) Pulkkinen, S.; Noguera, M.; Rodríguez-Santia , L.; Sodupe, M.; Bertran, J. Chem. -Eur. J. 2000, 6 (23), 4393. doi: 10.1002/1521-3765(20001201)6:23<4393::AID-CHEM4393>3.0.CO;2-H

    25. [25]

      (25) Apse, M. P.; Aharon, G. S.; Snedden, W. A.; Blumwald, E. Science 1999, 285, 1256. doi: 10.1126/science.285.5431.1256

    26. [26]

      (26) Xu, J. H.; Hu, C.W. Acta Chim. Sin. 2006, 64 (16), 1622. [徐建华, 胡常伟. 化学学报, 2006, 64 (16), 1622.]

    27. [27]

      (27) Khoshkbarchi, M. K.; Vera, J. H. Ind. Eng. Chem. Res. 1997, 36 (6), 2445. doi: 10.1021/ie9606395

    28. [28]

      (28) Xia, F. F.; Yi, H. B.; Zeng, D.W. J. Phys. Chem. A 2009, 113 (51), 14029. doi: 10.1021/jp909092p

    29. [29]

      (29) Bryantsev, V. S.; Diallo, M. S.; ddard, W. A., III. J. Phys. Chem. B 2008, 112 (32), 9709. doi: 10.1021/jp802665d

    30. [30]

      (30) Harris, D. J.; Brodholt, J. P.; Harding, J. H.; Sherman, D. M. Mol. Phys. 2001, 99 (10), 825. doi: 10.1080/00268970010015588

    31. [31]

      (31) Pye, C. C.; Corbeil, C. R.; Rudolph, W.W. Phys. Chem. Chem. Phys. 2006, 8, 5428. doi: 10.1039/b610084h

    32. [32]

      (32) Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51. doi: 10.1016/j.cplett.2004.06.011

    33. [33]

      (33) Frisch, M. J.; Trucks, H. B.; Schlegel, G. E.; et al. Gaussian 09, Revision A.1; Gaussian Inc.:Wallingford, CT, 2009.

    34. [34]

      (34) Todorov, I. T.; Smith, W.; Trachenko, K.; Dove, M. T. J. Mater. Chem. 2006, 16, 1911. doi: 10.1039/b517931a

    35. [35]

      (35) Adcock, S. A.; McCammon, J. A. Chem. Rev. 2006, 106 (5), 1589. doi: 10.1021/cr040426m

    36. [36]

      (36) Nosé, S. Mol. Phys. 1984, 52, 255. doi: 10.1080/00268978400101201

    37. [37]

      (37) Hoover, W. G. Phys. Rev. A 1985, 31, 1695. doi: 10.1103/PhysRevA.31.1695

    38. [38]

      (38) Martyna, G. J.; Klein, M. L.; Tuckerman, M. E. J. Chem. Phys. 1992, 97 (4), 2635. doi: 10.1063/1.463940

    39. [39]

      (39) Qiao, L. G.; Fan, J. F.; Yang, C. H. Acta Chim. Sin. 2007, 65 (17), 1751. [乔龙光, 樊建芬, 杨春红. 化学学报, 2007, 65 (17), 1751.]

    40. [40]

      (40) El-Dossoki, F. I. J. Solution Chem. 2010, 39, 1311. doi: 10.1007/s10953-010-9580-3

    41. [41]

      (41) Bush, M. F.; Oomens, J.; Saykally, R. J.; Williams, E. R. J. Am. Chem. Soc. 2008, 130 (20), 6463. doi: 10.1021/ja711343q

    42. [42]

      (42) Meng, X. J. Acta Phys. -Chim. Sin. 2006, 22 (1), 98. [孟祥军. 物理化学学报, 2006, 22 (1), 98.] doi: 10.3866/PKU.WHXB20060120

    43. [43]

      (43) Mohammed, A. M.; Loeffler, H. H.; Inada, Y.; Tanada, K.; Funahashi, S. J. Mol. Liq. 2005, 119, 55. doi: 10.1016/j.molliq.2004.10.008

    44. [44]

      (44) Bock, C.W.; Markham, G. D.; Katz, A. K.; Glusker, J. P. Theor. Chem. Acc. 2006, 115, 100. doi: 10.1007/s00214-005-0056-2

    45. [45]

      (45) Schwenk, C. F.; Rode, B. M. J. Chem. Phys. 2003, 119, 9523. doi: 10.1063/1.1614224

    46. [46]

      (46) Xia, F. F.; Yi, H. B.; Zeng, D.W. J. Phys. Chem. A 2010, 114 (32), 8406. doi: 10.1021/jp1000804

    47. [47]

      (47) Marcus, Y. J. Chem. Soc. Faraday Trans. 1991, 87 (18), 2995. doi: 10.1039/ft9918702995

    48. [48]

      (48) Tomé, L. I. N.; Jorge, M.; mes, J. R. B.; Coutinho, J. A. P. J. Phys. Chem. B 2010, 114 (49), 16450. doi: 10.1021/jp104626w


  • 加载中
    1. [1]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    2. [2]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    5. [5]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    6. [6]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    7. [7]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    8. [8]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    9. [9]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    10. [10]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    11. [11]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    12. [12]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    13. [13]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    14. [14]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    15. [15]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    16. [16]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    19. [19]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    20. [20]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

Metrics
  • PDF Downloads(357)
  • Abstract views(802)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return