Citation: HUANG Yan, FU Min, HE Tao. Synthesis of g-C3N4/BiVO4 Nanocomposite Photocatalyst and Its Application in Photocatalytic Reduction of CO2[J]. Acta Physico-Chimica Sinica, ;2015, 31(6): 1145-1152. doi: 10.3866/PKU.WHXB201504015
-
A visible-light-active graphitic-like carbon nitride (g-C3N4)/BiVO4 nanocomposite photocatalyst was synthesized using a facile ultrasonic dispersion method. The nanocomposite was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-Vis) spectroscopy, photoluminescence (PL) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, and photocurrent response measurements. The photocatalytic activity in the photoreduction of CO2 under visible-light irradiation (λ>420 nm) was determined. The g-C3N4/BiVO4 catalyst containing 40% (w) g-C3N4 showed the highest photocatalytic activity; it was almost twice that of g-C3N4 nanosheets and four times that of BiVO4. The enhanced photocatalytic activity is attributed to the formation of heterostructures at the g-C3N4/BiVO4 interface and appropriate alignment of the energy levels between them, which can facilitate separation of photogenerated electrons and holes.
-
Keywords:
-
Photocatalysis
, - CO2 conversion,
- Methane,
- Carbon nitride,
- Bismuth vanadate
-
-
-
[1]
(1) Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Nature 1979, 277, 637. doi: 10.1038/277637a0
-
[2]
(2) Yaghoubi, H.; Li, Z.; Chen, Y.; N , H. T.; Bhethanabotla, V. R.; Joseph, B.; Ma, S. Q.; Schlaf, R.; Takshi, A. ACS Catal. 2015, 5, 327. doi: 10.1021/cs501539q
-
[3]
(3) Fujiwara, H.; Hosokawa, H.; Murakoshi, K.; Wada, Y.; Yanagida, S. Langmuir 1998, 14, 5154. doi: 10.1021/la9801561
-
[4]
(4) Zhou, Y.; Tian, Z. P.; Zhao, Z. Y.; Liu, Q.; Kou, J. H.; Chen, X. Y.; Gao, J.; Yan, S. C.; Zou, Z. G. ACS Appl. Mater. Inter. 2011, 3, 3594. doi: 10.1021/am2008147
-
[5]
(5) Wang, Z. Y.; Chou, H. C.; Wu, J. C.S.; Tsai, D. P.; Mul, G. Appl. Catal. A 2010, 380, 172. doi: 10.1016/j.apcata.2010.03.059
-
[6]
(6) Yan, S. C.; Ouyang, S. X.; Gao, J.; Yang, M.; Feng, J. Y.; Fan X. X.; Wan, L. J.; Li, Z. S.; Ye, J. H.; Zhou, Y.; Zou, Z. G. Angew. Chem. Int. Edit. 2010, 122, 6544. doi: 10.1002/ange.201003270
-
[7]
(7) Yui, T.; Kan, A.; Saitoh, C.; Koike, K.; Ibusuki, T.; Ishitani, O. ACS Appl. Mater. Inter. 2011, 3, 2594. doi: 10.1021/am200425y
-
[8]
(8) Zhao, Z. H.; Fan, J. M.; Wang, J. Y.; Li, R. F. Catal. Commun. 2012, 21, 32. doi: 10.1016/j.catcom.2012.01.022
-
[9]
(9) Truong, Q. D.; Liu, J. Y.; Chung, C. C.; Ling, Y. C. Catal. Commun. 2012, 19, 85. doi: 10.1016/j.catcom.2011.12.025
-
[10]
(10) Hensel, J.; Wang, G. M.; Li, Y.; Zhang, J. Z. Nano Lett. 2010, 10, 478. doi: 10.1021/nl903217w
-
[11]
(11) Xiang, Q. J.; Yu, J. G.; Jaroniec, M. J. Am. Chem. Soc. 2012, 134, 6575. doi: 10.1021/ja302846n
-
[12]
(12) Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76. doi: 10.1038/nmat2317
-
[13]
(13) Maeda, K.; Kuriki, R.; Zhang, M.W.; Wang, X. C.; Ishitani, O. J. Mater. Chem. A 2014, 2, 15146. doi: 10.1039/C4TA03128H
-
[14]
(14) Bai, S.; Wang, X. J.; Hu, C. Y.; Xie, M. L.; Jiang, J.; Xiong, Y. J. Chem. Commun. 2014, 50, 6094. doi: 10.1039/c4cc00745j
-
[15]
(15) Zhang, W. D.; Sun, Y. J.; Dong, F.; Zhang, W.; Duan, S.; Zhang, Q. Dalton. Trans. 2014, 43, 12026. doi: 10.1039/C4DT00513A
-
[16]
(16) Hu, M.; Reboul, J.; Furukawa, S.; Radhakrishnan, L.; Zhang, Y. J.; Srinivasu, P.; Iwai, H.; Wang, H. J.; Nemoto, Y.; Suzuki, N.; Kitagawa, S.; Yamauchi, Y. Chem. Commun. 2011, 47, 8124. doi: 10.1039/c1cc12378e
-
[17]
(17) Yan, S. C.; Li, Z. S.; Zou, Z. G. Langmuir 2009, 25, 10397. doi: 10.1021/la900923z
-
[18]
(18) Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. M. Adv. Funct. Mater. 2012, 22, 4763. doi: 10.1002/adfm.v22.22
-
[19]
(19) Zhang, X. D.; Wang, H. X.; Wang, H.; Zhang, Q.; Xie, J. F.; Tian, Y. P.; Wang, J.; Xie, Y. Adv. Mater. 2014, 26, 4438. doi: 10.1002/adma.v26.26
-
[20]
(20) Lan, B. Y.; Shi, H. F. Acta Phys. -Chim. Sin. 2014, 30, 2177. [蓝奔月, 史海峰. 物理化学学报, 2014, 30, 2177.] doi: 10.3866/PKU.WHXB201409303
-
[21]
(21) Shi, H. F.; Chen, G. Q.; Zhang, C. L.; Zou, Z. G. ACS Catal. 2014, 4, 3637. doi: 10.1021/cs500848f
-
[22]
(22) Ye, Y. M.; Zhang, L. H.; Teng, B. T.; Fan, M. H. Environ. Sci. Tech. 2015, 49, 649. doi: 10.1021/es5046309
-
[23]
(23) Kudo, A.; Ueda, K.; Kato, H.; Mikami, I. Catal. Lett. 1998, 53, 229. doi: 10.1023/A:1019034728816
-
[24]
(24) Sun, Y. F.; Wu, C. Z.; Long, R.; Cui, Y.; Zhang, S. D.; Xie, Y. Chem. Commun. 2009, 4542.
-
[25]
(25) Ke, D. N.; Peng, T. Y.; Ma, L.; Cai, P.; Dai, K. Inorg. Chem. 2009, 48, 4685. doi: 10.1021/ic900064m
-
[26]
(26) Zhang, L.; Chen, D. R.; Jiao, X. L. J. Phys. Chem. B 2006, 110, 2668. doi: 10.1021/jp056367d
-
[27]
(27) Wang, Z. Q.; Luo, W. J.; Yan, S. C.; Feng, J. Y.; Zhao, Z. Y.; Zhu, Y. S.; Li, Z. S.; Zou, Z. G. CrystEngComm 2011, 13, 2500. doi: 10.1039/c0ce00799d
-
[28]
(28) Mao, J.; Peng, T. Y.; Zhang, X. H.; Li, K.; Zan, L. Catal. Commun. 2012, 28, 38. doi: 10.1016/j.catcom.2012.08.008
-
[29]
(29) Zhang, A. P.; Zhang, J. Z. J. Alloy. Compd. 2010, 491, 631. doi: 10.1016/j.jallcom.2009.11.027
-
[30]
(30) Liu, K. J.; Chang, Z. D.; Li, W. J.; Che, P.; Zhou, H. L. Sci. China Chem. 2012, 55, 1770. doi: 10.1007/s11426-012-4525-x
-
[31]
(31) Cao, F. P.; Ding, C. H.; Liu, K. C.; Kang, B. Y.; Liu, W. M. Cryst. Res. Technol. 2014, 49, 933. doi: 10.1002/crat.v49.12
-
[32]
(32) Ehsan, M. F.; Ashiq, M. N.; Bi, F.; Bi, Y. Q.; Palanisamy, S.; He, T. RSC Adv. 2014, 4, 48411. doi: 10.1039/C4RA06828A
-
[33]
(33) Pérez, U. M. G.; Guzmán, S. S.; Cruz, A. M.; Méndez, U. O. J. Mol. Catal. A 2011, 335, 169. doi: 10.1016/j.molcata.2010.11.030
-
[34]
(34) Hong, J. D.; Xia, X. Y.; Wang, Y. S.; Xu, R. J. Mater. Chem. 2012, 22, 15006. doi: 10.1039/c2jm32053c
-
[35]
(35) Yuan, Y. P.; Yin, L. S.; Cao, S.W.; Gu, L. N.; Xu, G. S.; Du, P. W.; Chai, H.; Liao, Y. S.; Xue, C. Green Chem. 2014, 16, 4663. doi: 10.1039/C4GC01517G
-
[36]
(36) Li, M. L.; Zhang, L. X.; Fan, X. Q.; Zhou, Y. J.; Wu, M. Y.; Shi, J. L. J. Mater. Chem. 2015, 3, 5189. doi: 10.1039/c4ta06295g
-
[37]
(37) Xiong, Z. G.; Zhang, L. L.; Ma, J. Z.; Zhao, X. S. Chem. Commun. 2010, 46, 6099. doi: 10.1039/c0cc01259a
-
[38]
(38) Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Chem. Mater. 2005, 17, 2588. doi: 10.1021/cm049100k
-
[39]
(39) Xu, Q. C.; Wellia, D. V.; Ng, Y. H.; Amal, R.; Tan, T. T. Y. J. Phys. Chem. C 2011, 115, 7419. doi: 10.1021/jp1090137
-
[40]
(40) Daude, N.; ut, C.; Jouanin, C. Phys. Rev. B 1977, 15, 3229. doi: 10.1103/PhysRevB.15.3229
-
[1]
-
-
[1]
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
-
[2]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[3]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[4]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[5]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[6]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[7]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[8]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[9]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[10]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[11]
Jun LI , Huipeng LI , Hua ZHAO , Qinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401
-
[12]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[13]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[14]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[15]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[16]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[17]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
-
[18]
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
-
[19]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[20]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[1]
Metrics
- PDF Downloads(509)
- Abstract views(808)
- HTML views(35)