Citation: ZHAO Jun-Feng, SUN Xiao-Li, LI Ji-Lai, HUANG Xu-Ri. Theoretical Study of Methanol C―H and O―H Bond Activation by PtRu Clusters[J]. Acta Physico-Chimica Sinica, ;2015, 31(6): 1077-1085. doi: 10.3866/PKU.WHXB201504014
-
Density functional theory calculations were performed to study the mechanism and reactivity of methanol oxidation mediated by PtnRum (n+m=3, n≠0) clusters. The potential energy surfaces and pathways of the initial O―H and C―H bond activations were predicted. The results show that the activation of methanol proceeds preferentially along the C―H bond activation pathway. The calculated reactivity order was Pt2Ru>Pt3> PtRu2. Frontier molecular orbital analysis showed that the initial C/O―H bond activation is a proton transfer process. The solvent effect was also investigated. This study will enable a deeper understanding of C/O―H bond activation and provide new ideas for catalyst selection and optimizing conditions for methanol activation.
-
Keywords:
-
Density functional theory
, - Cluster,
- Methanol,
- Reactivity,
- Proton transfer
-
-
-
[1]
(1) de Visser, S. P.; Shaik, S. J. Am. Chem. Soc. 2003, 125, 7413. doi: 10.1021/ja034142f
-
[2]
(2) Schwarz, H.; Schröder, D. Pure Appl. Chem. 2000, 72, 2319.
-
[3]
(3) Schwarz, H. Angew. Chem. Int. Edit. 2011, 50, 10096. doi: 10.1002/anie.201006424
-
[4]
(4) Sun, X. L.; Li, J. L.; Huang, X. R.; Sun, C. C. Curr. Inorg. Chem. 2012, 2, 64. doi: 10.2174/1877944111202010064
-
[5]
(5) Li, J. L.; Zhang, X.; Huang, X. R. Phys. Chem. Chem. Phys. 2012, 14, 246. doi: 10.1039/C1CP22187F
-
[6]
(6) Li, J. L.; Geng, C. Y.; Huang, X. R.; Zhang, X.; Sun, C. C. Organometallics 2007, 26, 2203. doi: 10.1021/om070039d
-
[7]
(7) Li, J. L.; Wu, X. N.; Schlangen, M.; Zhou, S. D.; nzález- Navarrete, P.; Tang, S. Y.; Schwarz, H. Angew. Chem. Int. Edit. 2015, doi: 10.1002/anie.201412441.
-
[8]
(8) Shaik, S.; de Visser, S. P.; Ogliaro, F.; Schwarz, H.; Schröder, D. Curr. Opin. Chem. Biol. 2002, 6, 556. doi: 10.1016/S1367-5931(02)00363-0
-
[9]
(9) Ye, S.; Neese, F. Curr. Opin. Chem. Biol. 2009, 13, 89. doi: 10.1016/j.cbpa.2009.02.007
-
[10]
(10) Ye, S.; Neese, F. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 1228. doi: 10.1073/pnas.1008411108
-
[11]
(11) Neese, F. J. Inorg. Biochem. 2006, 100, 716. doi: 10.1016/j.jinorgbio.2006.01.020
-
[12]
(12) Geng, C. Y.; Ye, S.; Neese, F. Angew. Chem. Int. Edit. 2010, 49, 5717. doi: 10.1002/anie.v49:33
-
[13]
(13) Geng, C. Y.; Li, J. L.; Huang, X. R.; Liu, H. L.; Li, Z.; Sun, C. C. J. Comput. Chem. 2008, 29, 686.
-
[14]
(14) Decker, A.; Rohde, J. U.; Klinker, E. J.; Wong, S. D.; Que, L.; Solomon, E. I. J. Am. Chem. Soc. 2007, 129, 15983. doi: 10.1021/ja074900s
-
[15]
(15) Shaik, S.; Kumar, D.; de Visser, S. P.; Altun, A.; Thiel, W. Chem. Rev. 2005, 105, 2279. doi: 10.1021/cr030722j
-
[16]
(16) Shaik, S.; Cohen, S.; Wang, Y.; Chen, H.; Kumar, D.; Thiel, W. Chem. Rev. 2009, 110, 949.
-
[17]
(17) Schöneboom, J. C.; Cohen, S.; Lin, H.; Shaik, S.; Thiel, W. J. Am. Chem. Soc. 2004, 126, 4017. doi: 10.1021/ja039847w
-
[18]
(18) Kwon, Y. H.; Kim, S. C.; Lee, S. Y. Macromolecules 2009, 42, 5244. doi: 10.1021/ma900781c
-
[19]
(19) Martínez-Huerta, M. V.; Rodríguez, J. L.; Tsiouvaras, N.; Peña, M. A.; Fierro, J. L. G.; Pastor, E. Chem. Mater. 2008, 20, 4249. doi: 10.1021/cm703047p
-
[20]
(20) Michel, C.; ltl, F.; Sautet, P. Phys. Chem. Chem. Phys. 2012, 14, 15286. doi: 10.1039/c2cp43014b
-
[21]
(21) Ranea, V. A.; Michaelides, A.; Ramírez, R.; de Andres, P. L.; Vergés, J. A.; King, D. A. Phys. Rev. Lett. 2004, 92, 136104. doi: 10.1103/PhysRevLett.92.136104
-
[22]
(22) Usami, Y.; Kagawa, K.; Kawazoe, M.; Yasuyuki, M.; Sakurai, H.; Haruta, M. Appl. Catal. A-Gen. 1998, 171, 123. doi: 10.1016/S0926-860X(98)00082-9
-
[23]
(23) Hamnett, A. Catal. Today 1997, 38, 445. doi: 10.1016/S0920-5861(97)00054-0
-
[24]
(24) Childers, C. L.; Huang, H. L.; Korzeniewski, C. Langmuir 1999, 15, 786. doi: 10.1021/la980798o
-
[25]
(25) Xu, C.; Wang, R.; Chen, M.; Zhang, Y.; Ding, Y. Phys. Chem. Chem. Phys. 2010, 12, 239. doi: 10.1039/B917788D
-
[26]
(26) Hernández-Fernández, P.; Montiel, M.; Ocón, P.; Fierro, J. L. G.; Wang, H.; Abruña, H. D.; Rojas, S. J. Power Sources 2010, 195, 7959. doi: 10.1016/j.jpowsour.2010.06.009
-
[27]
(27) Wen, Z.; Liu, J.; Li, J. Adv. Mater. 2008, 20, 743.
-
[28]
(28) Li, Y.; Tang, L.; Li, J. Electrochem. Commun. 2009, 11, 846. doi: 10.1016/j.elecom.2009.02.009
-
[29]
(29) Zhao, Y.; Zhan, L.; Tian, J.; Nie, S.; Ning, Z. Electrochim. Acta 2011, 56, 1967. doi: 10.1016/j.electacta.2010.12.005
-
[30]
(30) Santhosh, P.; palan, A.; Lee, K. P. J. Catal. 2006, 238, 177. doi: 10.1016/j.jcat.2005.12.014
-
[31]
(31) McIntyre, D. R.; Burstein, G. T.; Vossen, A. J. Power Sources 2002, 107, 67. doi: 10.1016/S0378-7753(01)00987-9
-
[32]
(32) Raghuveer, V.; Viswanathan, B. J. Power Sources 2005, 144, 1. doi: 10.1016/j.jpowsour.2004.11.033
-
[33]
(33) Hays, C. C.; Manoharan, R.; odenough, J. B. J. Power Sources 1993, 45, 291. doi: 10.1016/0378-7753(93)80018-K
-
[34]
(34) Dang, D.; Gao, H. L.; Peng, L. J.; Su, Y. L.; Liao, S. J.; Wang, Y. Acta Phys. -Chim. Sin. 2011, 27, 2379. [党岱, 高海丽, 彭良进, 苏允兰, 廖世军, 王晔. 物理化学学报, 2011, 27, 2379.] doi: 10.3866/PKU.WHXB20110922
-
[35]
(35) Ali, L. I.; Ali, A. G. A.; Aboul-Fotouh, S. M.; Aboul-Gheit, A. K. Appl. Catal. A-Gen. 1999, 177, 99. doi: 10.1016/S0926-860X (98)00248-8
-
[36]
(36) Lafuente, E.; Muñoz, E.; Benito, A. M.; Maser, W. K.; Martínez, M. T.; Alcaide, F.; Ganborena, L.; Cendoya, I.; Miguel, O.; Rodríguez, J.; Urriolabeitia, E. P.; Navarro, R. J. Mater. Res. 2006, 21, 2841. doi: 10.1557/jmr.2006.0355
-
[37]
(37) Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.; Sarangapani, S.; Smotkin, E. S.; Mallouk, T. E. Science 1998, 280, 1735. doi: 10.1126/science.280.5370.1735
-
[38]
(38) Oleg, A. P. J. Solid State Electr. 2008, 12, 609. doi: 10.1007/s10008-007-0500-4
-
[39]
(39) Sun, Y. P.; Xing, L.; Scott, K. J. Power Sources 2010, 195, 1. doi: 10.1016/j.jpowsour.2009.07.028
-
[40]
(40) Luo, J.; Njoki, P. N.; Lin, Y.; Mott, D.; Wang, L.; Zhong, C. J. Langmuir 2006, 22, 2892. doi: 10.1021/la0529557
-
[41]
(41) Luo, J.; Maye, M. M.; Kariuki, N. N.; Wang, L.; Njoki, P.; Lin, Y.; Schadt, M.; Naslund, H. R.; Zhong, C. J. Catal. Today 2005, 99, 291. doi: 10.1016/j.cattod.2004.10.013
-
[42]
(42) Morante-Catacora, T. Y.; Ishikawa, Y.; Cabrera, C. R. J. Electroanal. Chem. 2008, 621, 103. doi: 10.1016/j.jelechem.2008.04.029
-
[43]
(43) Neto, A. O.; Dias, R. R.; Tusi, M. M.; Linardi, M.; Spinacé, E. V. J. Power Sources 2007, 166, 87. doi: 10.1016/j.jpowsour.2006.12.088
-
[44]
(44) Yi, Q.; Zhang, J.; Chen, A.; Liu, X.; Xu, G.; Zhou, Z. J. Appl. Electrochem. 2008, 38, 695. doi: 10.1007/s10800-008-9490-x
-
[45]
(45) Liu, Y. C.; Qiu, X. P.; Huang, Y. Q.; Zhu, W. T. J. Power Sources 2002, 111, 160. doi: 10.1016/S0378-7753(02)00298-7
-
[46]
(46) Thomas, J. M. Angew. Chem. Int. Edit. 1994, 33, 913.
-
[47]
(47) Eller, K.; Schwarz, H. Chem. Rev. 1991, 91, 1121. doi: 10.1021/cr00006a002
-
[48]
(48) Kulesza, P. J.; Matczak, M.; Wolkiewicz, A.; Grzybowska, B.; Galkowski, M.; Malik, M. A.; Wieckowski, A. Electrochim. Acta 1999, 44, 2131. doi: 10.1016/S0013-4686(98)00321-1
-
[49]
(49) Gasteiger, H. A.; Markovic, N.; Ross, P. N.; Cairns, E. J. J. Phys. Chem. 1993, 97, 12020. doi: 10.1021/j100148a030
-
[50]
(50) Lu, Q.; Li, J. P. Guangdong Chemical Industry 2006, 33, 8. [陆勤, 李俊鹏. 广东化工, 2006, 33, 8.],
-
[51]
(51) Zhong, W.; Liu, Y.; Zhang, D. J. Mol. Model. 2012, 18, 3051. doi: 10.1007/s00894-011-1318-7
-
[52]
(52) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.02; Gaussian Inc.:Wallingford, CT, 2009.
-
[53]
(53) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/ 1.464913
-
[54]
(54) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299. doi: 10.1063/1.448975
-
[55]
(55) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270. doi: 10.1063/1.448799
-
[56]
(56) Fukui, K. J. Phys. Chem. 1970, 74, 4161. doi: 10.1021/j100717a029
-
[57]
(57) Neese, F. WIREs Comput. Mol. Sci. 2012, 2, 73. doi: 10.1002/wcms.81
-
[58]
(58) Neese, F. J. Am. Chem. Soc 2006, 128, 10213. doi: 10.1021/ja061798a
-
[59]
(59) Sun, X. L.; Huang, X. R.; Li, J. L.; Huo, R. P.; Sun, C. C. J. Phys. Chem. A 2012, 116, 1475. doi: 10.1021/jp2120302
-
[60]
(60) Sun, X. L.; Geng, C. Y.; Huo, R. P.; Ryde, U.; Bu, Y. X.; Li, J. L. J. Phys. Chem. B 2014, 118, 1493.
-
[61]
(61) Sun, X. H.; Sun, X. L.; Geng, C. Y.; Zhao, H. T.; Li, J. L. J. Phys. Chem. A 2014, 118, 7146. doi: 10.1021/jp505662x
-
[62]
(62) Huo, R. P.; Zhang, X.; Huang, X. R.; Li, J. L.; Sun, C. C. J. Mol. Model. 2013, 19, 1009. doi: 10.1007/s00894-012-1616-8
-
[63]
(63) Sun, X. L.; Li, J. L.; Huang, X. R.; Sun, C. C. Acta Chim. Sin. 2012, 70, 1245. [孙小丽, 李吉来, 黄旭日, 孙家钟. 化学学报, 2012, 70, 1245.] doi: 10.6023/A1201134
-
[64]
(64) Huo, R. P.; Zhang, X.; Huang, X. R.; Li, J. L.; Sun, C. C. J. Phys. Chem. A 2011, 115, 3576. doi: 10.1021/jp200231n
-
[65]
(65) Pettersen, E. F.; ddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. J. Comput. Chem. 2004, 25, 1605.
-
[66]
(66) Zhang, X.; Schwarz, H. Theor. Chem. Acc. 2011, 129, 389. doi: 10.1007/s00214-010-0861-0
-
[67]
(67) Li, J. L.; Mata, R. A.; Ryde, U. J. Chem. Theory Comput. 2013, 9, 1799. doi: 10.1021/ct301094r
-
[68]
(68) Zhang, X.; Schwarz, H. Chem. -Eur. J. 2010, 16, 5882. doi: 10.1002/chem.201000567
-
[69]
(69) Li, J. L.; Ryde, U. Inorg. Chem. 2014, 53, 11913. doi: 10.1021/ic5010837
-
[70]
(70) Li, J. L.; nzález-Navarrete, P.; Schlangen, M.; Schwarz, H. Chem. -Eur. J. 2015, 21, 7780. doi: 10.1002/chem.201500715
-
[71]
(71) Greeley, J.; Mavrikakis, M. J. Am. Chem. Soc. 2002, 124, 7193. doi: 10.1021/ja017818k
-
[72]
(72) Greeley, J.; Mavrikakis, M. J. Am. Chem. Soc. 2004, 126, 3910. doi: 10.1021/ja037700z
-
[1]
-
-
[1]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[2]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[3]
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
-
[4]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[5]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[6]
Quanliang Chen , Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133
-
[7]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[8]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[9]
Ling Liu , Haibin Wang , Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080
-
[10]
Wanmin Cheng , Juan Du , Peiwen Liu , Yiyun Jiang , Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066
-
[11]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[12]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[13]
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
-
[14]
Yukai Jiang , Yihan Wang , Yunkai Zhang , Yunping Wei , Ying Ma , Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033
-
[15]
Jingjing QING , Fan HE , Zhihui LIU , Shuaipeng HOU , Ya LIU , Yifan JIANG , Mengting TAN , Lifang HE , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003
-
[16]
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
-
[17]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[18]
Ping Song , Nan Zhang , Jie Wang , Rui Yan , Zhiqiang Wang , Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087
-
[19]
Jian Jin , Jing Cheng , Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010
-
[20]
Zongfei YANG , Xiaosen ZHAO , Jing LI , Wenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306
-
[1]
Metrics
- PDF Downloads(375)
- Abstract views(959)
- HTML views(36)