Citation:
ZHAO Jun-Feng, SUN Xiao-Li, LI Ji-Lai, HUANG Xu-Ri. Theoretical Study of Methanol C―H and O―H Bond Activation by PtRu Clusters[J]. Acta Physico-Chimica Sinica,
;2015, 31(6): 1077-1085.
doi:
10.3866/PKU.WHXB201504014
-
Density functional theory calculations were performed to study the mechanism and reactivity of methanol oxidation mediated by PtnRum (n+m=3, n≠0) clusters. The potential energy surfaces and pathways of the initial O―H and C―H bond activations were predicted. The results show that the activation of methanol proceeds preferentially along the C―H bond activation pathway. The calculated reactivity order was Pt2Ru>Pt3> PtRu2. Frontier molecular orbital analysis showed that the initial C/O―H bond activation is a proton transfer process. The solvent effect was also investigated. This study will enable a deeper understanding of C/O―H bond activation and provide new ideas for catalyst selection and optimizing conditions for methanol activation.
-
Keywords:
-
Density functional theory
, - Cluster,
- Methanol,
- Reactivity,
- Proton transfer
-
-
-
-
[1]
(1) de Visser, S. P.; Shaik, S. J. Am. Chem. Soc. 2003, 125, 7413. doi: 10.1021/ja034142f
-
[2]
(2) Schwarz, H.; Schröder, D. Pure Appl. Chem. 2000, 72, 2319.
-
[3]
(3) Schwarz, H. Angew. Chem. Int. Edit. 2011, 50, 10096. doi: 10.1002/anie.201006424
-
[4]
(4) Sun, X. L.; Li, J. L.; Huang, X. R.; Sun, C. C. Curr. Inorg. Chem. 2012, 2, 64. doi: 10.2174/1877944111202010064
-
[5]
(5) Li, J. L.; Zhang, X.; Huang, X. R. Phys. Chem. Chem. Phys. 2012, 14, 246. doi: 10.1039/C1CP22187F
-
[6]
(6) Li, J. L.; Geng, C. Y.; Huang, X. R.; Zhang, X.; Sun, C. C. Organometallics 2007, 26, 2203. doi: 10.1021/om070039d
-
[7]
(7) Li, J. L.; Wu, X. N.; Schlangen, M.; Zhou, S. D.; nzález- Navarrete, P.; Tang, S. Y.; Schwarz, H. Angew. Chem. Int. Edit. 2015, doi: 10.1002/anie.201412441.
-
[8]
(8) Shaik, S.; de Visser, S. P.; Ogliaro, F.; Schwarz, H.; Schröder, D. Curr. Opin. Chem. Biol. 2002, 6, 556. doi: 10.1016/S1367-5931(02)00363-0
-
[9]
(9) Ye, S.; Neese, F. Curr. Opin. Chem. Biol. 2009, 13, 89. doi: 10.1016/j.cbpa.2009.02.007
-
[10]
(10) Ye, S.; Neese, F. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 1228. doi: 10.1073/pnas.1008411108
-
[11]
(11) Neese, F. J. Inorg. Biochem. 2006, 100, 716. doi: 10.1016/j.jinorgbio.2006.01.020
-
[12]
(12) Geng, C. Y.; Ye, S.; Neese, F. Angew. Chem. Int. Edit. 2010, 49, 5717. doi: 10.1002/anie.v49:33
-
[13]
(13) Geng, C. Y.; Li, J. L.; Huang, X. R.; Liu, H. L.; Li, Z.; Sun, C. C. J. Comput. Chem. 2008, 29, 686.
-
[14]
(14) Decker, A.; Rohde, J. U.; Klinker, E. J.; Wong, S. D.; Que, L.; Solomon, E. I. J. Am. Chem. Soc. 2007, 129, 15983. doi: 10.1021/ja074900s
-
[15]
(15) Shaik, S.; Kumar, D.; de Visser, S. P.; Altun, A.; Thiel, W. Chem. Rev. 2005, 105, 2279. doi: 10.1021/cr030722j
-
[16]
(16) Shaik, S.; Cohen, S.; Wang, Y.; Chen, H.; Kumar, D.; Thiel, W. Chem. Rev. 2009, 110, 949.
-
[17]
(17) Schöneboom, J. C.; Cohen, S.; Lin, H.; Shaik, S.; Thiel, W. J. Am. Chem. Soc. 2004, 126, 4017. doi: 10.1021/ja039847w
-
[18]
(18) Kwon, Y. H.; Kim, S. C.; Lee, S. Y. Macromolecules 2009, 42, 5244. doi: 10.1021/ma900781c
-
[19]
(19) Martínez-Huerta, M. V.; Rodríguez, J. L.; Tsiouvaras, N.; Peña, M. A.; Fierro, J. L. G.; Pastor, E. Chem. Mater. 2008, 20, 4249. doi: 10.1021/cm703047p
-
[20]
(20) Michel, C.; ltl, F.; Sautet, P. Phys. Chem. Chem. Phys. 2012, 14, 15286. doi: 10.1039/c2cp43014b
-
[21]
(21) Ranea, V. A.; Michaelides, A.; Ramírez, R.; de Andres, P. L.; Vergés, J. A.; King, D. A. Phys. Rev. Lett. 2004, 92, 136104. doi: 10.1103/PhysRevLett.92.136104
-
[22]
(22) Usami, Y.; Kagawa, K.; Kawazoe, M.; Yasuyuki, M.; Sakurai, H.; Haruta, M. Appl. Catal. A-Gen. 1998, 171, 123. doi: 10.1016/S0926-860X(98)00082-9
-
[23]
(23) Hamnett, A. Catal. Today 1997, 38, 445. doi: 10.1016/S0920-5861(97)00054-0
-
[24]
(24) Childers, C. L.; Huang, H. L.; Korzeniewski, C. Langmuir 1999, 15, 786. doi: 10.1021/la980798o
-
[25]
(25) Xu, C.; Wang, R.; Chen, M.; Zhang, Y.; Ding, Y. Phys. Chem. Chem. Phys. 2010, 12, 239. doi: 10.1039/B917788D
-
[26]
(26) Hernández-Fernández, P.; Montiel, M.; Ocón, P.; Fierro, J. L. G.; Wang, H.; Abruña, H. D.; Rojas, S. J. Power Sources 2010, 195, 7959. doi: 10.1016/j.jpowsour.2010.06.009
-
[27]
(27) Wen, Z.; Liu, J.; Li, J. Adv. Mater. 2008, 20, 743.
-
[28]
(28) Li, Y.; Tang, L.; Li, J. Electrochem. Commun. 2009, 11, 846. doi: 10.1016/j.elecom.2009.02.009
-
[29]
(29) Zhao, Y.; Zhan, L.; Tian, J.; Nie, S.; Ning, Z. Electrochim. Acta 2011, 56, 1967. doi: 10.1016/j.electacta.2010.12.005
-
[30]
(30) Santhosh, P.; palan, A.; Lee, K. P. J. Catal. 2006, 238, 177. doi: 10.1016/j.jcat.2005.12.014
-
[31]
(31) McIntyre, D. R.; Burstein, G. T.; Vossen, A. J. Power Sources 2002, 107, 67. doi: 10.1016/S0378-7753(01)00987-9
-
[32]
(32) Raghuveer, V.; Viswanathan, B. J. Power Sources 2005, 144, 1. doi: 10.1016/j.jpowsour.2004.11.033
-
[33]
(33) Hays, C. C.; Manoharan, R.; odenough, J. B. J. Power Sources 1993, 45, 291. doi: 10.1016/0378-7753(93)80018-K
-
[34]
(34) Dang, D.; Gao, H. L.; Peng, L. J.; Su, Y. L.; Liao, S. J.; Wang, Y. Acta Phys. -Chim. Sin. 2011, 27, 2379. [党岱, 高海丽, 彭良进, 苏允兰, 廖世军, 王晔. 物理化学学报, 2011, 27, 2379.] doi: 10.3866/PKU.WHXB20110922
-
[35]
(35) Ali, L. I.; Ali, A. G. A.; Aboul-Fotouh, S. M.; Aboul-Gheit, A. K. Appl. Catal. A-Gen. 1999, 177, 99. doi: 10.1016/S0926-860X (98)00248-8
-
[36]
(36) Lafuente, E.; Muñoz, E.; Benito, A. M.; Maser, W. K.; Martínez, M. T.; Alcaide, F.; Ganborena, L.; Cendoya, I.; Miguel, O.; Rodríguez, J.; Urriolabeitia, E. P.; Navarro, R. J. Mater. Res. 2006, 21, 2841. doi: 10.1557/jmr.2006.0355
-
[37]
(37) Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.; Sarangapani, S.; Smotkin, E. S.; Mallouk, T. E. Science 1998, 280, 1735. doi: 10.1126/science.280.5370.1735
-
[38]
(38) Oleg, A. P. J. Solid State Electr. 2008, 12, 609. doi: 10.1007/s10008-007-0500-4
-
[39]
(39) Sun, Y. P.; Xing, L.; Scott, K. J. Power Sources 2010, 195, 1. doi: 10.1016/j.jpowsour.2009.07.028
-
[40]
(40) Luo, J.; Njoki, P. N.; Lin, Y.; Mott, D.; Wang, L.; Zhong, C. J. Langmuir 2006, 22, 2892. doi: 10.1021/la0529557
-
[41]
(41) Luo, J.; Maye, M. M.; Kariuki, N. N.; Wang, L.; Njoki, P.; Lin, Y.; Schadt, M.; Naslund, H. R.; Zhong, C. J. Catal. Today 2005, 99, 291. doi: 10.1016/j.cattod.2004.10.013
-
[42]
(42) Morante-Catacora, T. Y.; Ishikawa, Y.; Cabrera, C. R. J. Electroanal. Chem. 2008, 621, 103. doi: 10.1016/j.jelechem.2008.04.029
-
[43]
(43) Neto, A. O.; Dias, R. R.; Tusi, M. M.; Linardi, M.; Spinacé, E. V. J. Power Sources 2007, 166, 87. doi: 10.1016/j.jpowsour.2006.12.088
-
[44]
(44) Yi, Q.; Zhang, J.; Chen, A.; Liu, X.; Xu, G.; Zhou, Z. J. Appl. Electrochem. 2008, 38, 695. doi: 10.1007/s10800-008-9490-x
-
[45]
(45) Liu, Y. C.; Qiu, X. P.; Huang, Y. Q.; Zhu, W. T. J. Power Sources 2002, 111, 160. doi: 10.1016/S0378-7753(02)00298-7
-
[46]
(46) Thomas, J. M. Angew. Chem. Int. Edit. 1994, 33, 913.
-
[47]
(47) Eller, K.; Schwarz, H. Chem. Rev. 1991, 91, 1121. doi: 10.1021/cr00006a002
-
[48]
(48) Kulesza, P. J.; Matczak, M.; Wolkiewicz, A.; Grzybowska, B.; Galkowski, M.; Malik, M. A.; Wieckowski, A. Electrochim. Acta 1999, 44, 2131. doi: 10.1016/S0013-4686(98)00321-1
-
[49]
(49) Gasteiger, H. A.; Markovic, N.; Ross, P. N.; Cairns, E. J. J. Phys. Chem. 1993, 97, 12020. doi: 10.1021/j100148a030
-
[50]
(50) Lu, Q.; Li, J. P. Guangdong Chemical Industry 2006, 33, 8. [陆勤, 李俊鹏. 广东化工, 2006, 33, 8.],
-
[51]
(51) Zhong, W.; Liu, Y.; Zhang, D. J. Mol. Model. 2012, 18, 3051. doi: 10.1007/s00894-011-1318-7
-
[52]
(52) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.02; Gaussian Inc.:Wallingford, CT, 2009.
-
[53]
(53) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/ 1.464913
-
[54]
(54) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299. doi: 10.1063/1.448975
-
[55]
(55) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270. doi: 10.1063/1.448799
-
[56]
(56) Fukui, K. J. Phys. Chem. 1970, 74, 4161. doi: 10.1021/j100717a029
-
[57]
(57) Neese, F. WIREs Comput. Mol. Sci. 2012, 2, 73. doi: 10.1002/wcms.81
-
[58]
(58) Neese, F. J. Am. Chem. Soc 2006, 128, 10213. doi: 10.1021/ja061798a
-
[59]
(59) Sun, X. L.; Huang, X. R.; Li, J. L.; Huo, R. P.; Sun, C. C. J. Phys. Chem. A 2012, 116, 1475. doi: 10.1021/jp2120302
-
[60]
(60) Sun, X. L.; Geng, C. Y.; Huo, R. P.; Ryde, U.; Bu, Y. X.; Li, J. L. J. Phys. Chem. B 2014, 118, 1493.
-
[61]
(61) Sun, X. H.; Sun, X. L.; Geng, C. Y.; Zhao, H. T.; Li, J. L. J. Phys. Chem. A 2014, 118, 7146. doi: 10.1021/jp505662x
-
[62]
(62) Huo, R. P.; Zhang, X.; Huang, X. R.; Li, J. L.; Sun, C. C. J. Mol. Model. 2013, 19, 1009. doi: 10.1007/s00894-012-1616-8
-
[63]
(63) Sun, X. L.; Li, J. L.; Huang, X. R.; Sun, C. C. Acta Chim. Sin. 2012, 70, 1245. [孙小丽, 李吉来, 黄旭日, 孙家钟. 化学学报, 2012, 70, 1245.] doi: 10.6023/A1201134
-
[64]
(64) Huo, R. P.; Zhang, X.; Huang, X. R.; Li, J. L.; Sun, C. C. J. Phys. Chem. A 2011, 115, 3576. doi: 10.1021/jp200231n
-
[65]
(65) Pettersen, E. F.; ddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. J. Comput. Chem. 2004, 25, 1605.
-
[66]
(66) Zhang, X.; Schwarz, H. Theor. Chem. Acc. 2011, 129, 389. doi: 10.1007/s00214-010-0861-0
-
[67]
(67) Li, J. L.; Mata, R. A.; Ryde, U. J. Chem. Theory Comput. 2013, 9, 1799. doi: 10.1021/ct301094r
-
[68]
(68) Zhang, X.; Schwarz, H. Chem. -Eur. J. 2010, 16, 5882. doi: 10.1002/chem.201000567
-
[69]
(69) Li, J. L.; Ryde, U. Inorg. Chem. 2014, 53, 11913. doi: 10.1021/ic5010837
-
[70]
(70) Li, J. L.; nzález-Navarrete, P.; Schlangen, M.; Schwarz, H. Chem. -Eur. J. 2015, 21, 7780. doi: 10.1002/chem.201500715
-
[71]
(71) Greeley, J.; Mavrikakis, M. J. Am. Chem. Soc. 2002, 124, 7193. doi: 10.1021/ja017818k
-
[72]
(72) Greeley, J.; Mavrikakis, M. J. Am. Chem. Soc. 2004, 126, 3910. doi: 10.1021/ja037700z
-
[1]
-
-
-
[1]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[2]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[3]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[4]
Yanglin Jiang , Mingqing Chen , Min Liang , Yige Yao , Yan Zhang , Peng Wang , Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027
-
[5]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[6]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[7]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[8]
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
-
[9]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[10]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[11]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[12]
Qiqi Li , Su Zhang , Yuting Jiang , Linna Zhu , Nannan Guo , Jing Zhang , Yutong Li , Tong Wei , Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009
-
[13]
Lubing Qin , Fang Sun , Meiyin Li , Hao Fan , Likai Wang , Qing Tang , Chundong Wang , Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008
-
[14]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[15]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[16]
Ling Liu , Haibin Wang , Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080
-
[17]
Wanmin Cheng , Juan Du , Peiwen Liu , Yiyun Jiang , Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066
-
[18]
Quanliang Chen , Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133
-
[19]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[20]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[1]
Metrics
- PDF Downloads(375)
- Abstract views(1047)
- HTML views(41)