Citation:
XU Hai-Ying, KAN Cai-Xia, WANG Chang-Shun, NI Yuan, LIU Jin-Sheng, XU Wei, KE Jun-Hua. Ultrafine Au Nanowires Synthesized via One-Step Wet Chemical Method[J]. Acta Physico-Chimica Sinica,
;2015, 31(6): 1186-1190.
doi:
10.3866/PKU.WHXB201504012
-
Ultrafine Au nanowires (AuNWs) were synthesized in high yields by a one-step wet chemical method using oleylamine as the solvent, surfactant, and reductant. The obtained AuNWs were of high purity and had a high aspect ratio, with diameters of ~2 nm and lengths of tens of micrometers. AuNWs of diameter ~9 nm were also obtained in the presence of oleic acid, at an oleic acid:oleylamine volume ratio of 1:1. The formation of AuNWs was studied by changing the reaction temperature and the volume of oleylamine. It is proposed that the growth mechanism of the Au nanostructures involves strong aurophilic interactions from oleylamine-AuCl complexes; the reduced Au atoms agglomerate and attach to preformed particles, and the oleylamine molecular layer acts as a soft template, leading to one-dimensional growth of Au atoms into AuNWs.
-
-
-
[1]
(1) Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Angew. Chem. Int. Edit. 2009, 48, 60. doi: 10.1002/anie.200802248
-
[2]
(2) Cui, Y.; Wei, Q. Q.; Park, H. K.; Lieber, C. M. Science 2001, 293, 1289. doi: 10.1126/science.1062711
-
[3]
(3) Hu, S.; Wang, X. Chem. Soc. Rev. 2013, 42, 5577. doi: 10.1039/c3cs00006k
-
[4]
(4) Wiley, B.; Sun, Y. G.; Xia, Y. N. Accounts Chem. Res. 2007, 40, 1067. doi: 10.1021/ar7000974
-
[5]
(5) Halder, A.; Ravishankar, N. Adv. Mater. 2007, 19, 1854.
-
[6]
(6) Hu, Y.; Lu, L. H.; Liu, J. H.; Chen, W. J. Mater. Chem. 2012, 22, 11994. doi: 10.1039/c2jm31483e
-
[7]
(7) Li, C. C.; Cai, W. P.; Kan, C. X.; Zhang, L. D. Mater. Lett. 2004, 58, 196. doi: 10.1016/S0167-577X(03)00444-0
-
[8]
(8) Lacroix, L. M.; Arenal, R.; Viau, G. J. Am. Chem. Soc. 2014, 136, 13075. doi: 10.1021/ja507728j
-
[9]
(9) Takahata, R.; Yamazoe, S.; Koyasu, K.; Tsukuda, T. J. Am. Chem. Soc. 2014, 136, 8489. doi: 10.1021/ja503558c
-
[10]
(10) Kempa, T. J.; Kim, S. K.; Day, R.W.; Park, H. G.; Nocera, D. G.; Lieber, C. M. J. Am. Chem. Soc. 2013, 135, 18354. doi: 10.1021/ja411050r
-
[11]
(11) Long, Y. T.; Zhang, M. N. Sci. China Chem. 2009, 52, 731.
-
[12]
(12) Kan, C. X.; Wang, C. S.; Li, H. C.; Qi, J. S.; Zhu, J. J.; Li, Z. S.; Shi, D. N. Small 2010, 6, 1768. doi: 10.1002/smll.201000600
-
[13]
(13) Kan, C. X.; Zhu, J. J.; Zhu, X. G. Journal of Physics D-Applied Physics 2008, 41, 155304. doi: 10.1088/0022-3727/41/15/155304
-
[14]
(14) Murphy, C. J.; Thompson, L. B.; Chernak, D. J.; Yang, J. A.; Sivapalan, S. T.; Boulos, S. P.; Huang, J. Y.; Alkilany, A. M.; Sisco, P. N. Current Opinion in Colloid & Interface Science 2011, 16, 128.
-
[15]
(15) Li, C. C.; Sun, L.; Sun, Y. Q.; Teranishi, T. Chem. Mater. 2013, 25, 2580. doi: 10.1021/cm400392e
-
[16]
(16) Millstone, J. E.; Hurst, S. J.; Metraux, G. S.; Cutler, J. I.; Mirkin, C. A. Small 2009, 5, 646. doi: 10.1002/smll.v5:6
-
[17]
(17) Dertli, E.; Coskun, S.; Esenturk, E. N. J. Mater. Res. 2013, 28, 250. doi: 10.1557/jmr.2012.407
-
[18]
(18) Sinha, A. K.; Basu, M.; Sarkar, S.; Pradhan, M.; Pal, T. Langmuir 2010, 26, 17419. doi: 10.1021/la102387x
-
[19]
(19) Kim, J. U.; Cha, S. H.; Shin, K.; Jho, J. Y.; Lee, J. C. Adv. Mater. 2004, 16, 459.
-
[20]
(20) Wang, J. G.; Tian, M. L.; Mallouk, T. E.; Chan, M. H.W. J. Phys. Chem. B 2004, 108, 841. doi: 10.1021/jp035068q
-
[21]
(21) Forrer, P.; Schlottig, F.; Siegenthaler, H.; Textor, M. J. Appl. Electrochem. 2000, 30, 533. doi: 10.1023/A:1003941129560
-
[22]
(22) Wang, J. Faraday Discuss. 2013, 164, 9. doi: 10.1039/c3fd00105a
-
[23]
(23) Li, Y.; Koshizaki, N.; Cai, W. P. Coord. Chem. Rev. 2011, 255, 357. doi: 10.1016/j.ccr.2010.09.015
-
[24]
(24) Dar, F. I.; Habouti, S.; Minch, R.; Dietze, M.; Es-Souni, M. J. Mater. Res. 2012, 22, 8671.
-
[25]
(25) Morita, C.; Tanuma, H.; Kawai, C; Ito, Y.; Imura, Y.; Kawai, T. Langmuir 2013, 29, 1669. doi: 10.1021/la304925e
-
[26]
(26) Mizoguchi, D.; Murouchi, M.; Hirata, H.; Takata, Y.; Niidome, Y.; Yamada, S. J. Nanopart. Res. 2011, 13, 6297. doi: 10.1007/s11051-011-0555-0
-
[27]
(27) Kura, H.; Ogawa, T. J. Appl. Phys. 2010, 107, 074310. doi: 10.1063/1.3369441
-
[28]
(28) Huo, Z. Y.; Tsung, C. K.; Huang, W. Y.; Zhang, X. F.; Yang, P. D. Nano Lett. 2008, 8, 2041. doi: 10.1021/nl8013549
-
[29]
(29) Ohnishi, H.; Kondo, Y.; Takayanagi, K. Nature 1998, 395, 780. doi: 10.1038/27399
-
[30]
(30) Kondo, Y.; Takayanagi, K. Science 2000, 289, 606. doi: 10.1126/science.289.5479.606
-
[31]
(31) Pazos-Perez, N.; Baranov, D.; Irsen, S.; Hilgendorff, M.; Liz-Marzan, L. M.; Giersig, M. Langmuir 2008, 24, 9855. doi: 10.1021/la801675d
-
[32]
(32) Wang, C.; Hu, Y.; Lieber, C. M.; Sun, S. J. Am. Chem. Soc. 2008, 130, 8902. doi: 10.1021/ja803408f
-
[33]
(33) Oo, T. Z.; Mathews, N.; Xing, G. C.; Wu, B.; Xing, B. G.; Wong, L. H.; Sum, T. C.; Mhaisalkar, S. G. J. Phys. Chem. C 2012, 116, 6453. doi: 10.1021/jp2099637
-
[34]
(34) Pud, S.; Kisner, A.; Heggen, M.; Belaineh, D.; Temirov, R.; Simon, U.; Offenhausser, A.; Mourzina, Y.; Vitusevich, S. Small 2013, 9, 846. doi: 10.1002/smll.v9.6
-
[35]
(35) Yoshihira, M.; Moriyama, S.; Guerin, H.; Ochi, Y.; Kura, H.; Ogawa, T.; Sato, T.; Maki, H. Appl. Phys. Lett. 2013, 102, 203117-1. doi: 10.1063/1.4807806
-
[36]
(36) Wang, C.; Sun, S. H. Chem. Asian J. 2009, 4, 1028. doi: 10.1002/asia.v4:7
-
[37]
(37) Lu, Y.; Song, J.; Huang, J. Y.; Lou, J. Adv. Funct. Mater. 2011, 21, 3982. doi: 10.1002/adfm.v21.20
-
[38]
(38) Lu, W.; Lieber, C. M. Nat. Mater. 2007, 6, 841. doi: 10.1038/nmat2028
-
[39]
(39) Feng, H.; Yang, Y.; You, Y.; Li, G.; Guo, J.; Yu, T.; Shen, Z.; Wu, T.; Xing, B. Chem. Commun. 2009, 1984.
-
[40]
(40) Lu, X. M.; Yavuz, M. S.; Tuan, H. Y.; Korgel, B. A.; Xia, Y. N. J. Am. Chem. Soc. 2008, 130, 8900. doi: 10.1021/ja803343m
-
[41]
(41) Huang, X.; Li, S.; Wu, S.; Huang, Y.; Boey, F.; Gan, C. L.; Zhang, H. Adv. Mater. 2012, 24, 979. doi: 10.1002/adma.201104153
-
[42]
(42) He, J.; Wang, Y.; Feng, Y.; Qi, X.; Zeng, Z.; Liu, Q.; Teo, W. S.; Gan, C. L.; Zhang, H.; Chen, H. ACS Nano 2013, 7, 2733. doi: 10.1021/nn4001885
-
[1]
-
-
-
[1]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[2]
Huanhuan XIE , Yingnan SONG , Lei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281
-
[3]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[4]
Lina Liu , Xiaolan Wei , Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112
-
[5]
Mengfei He , Chao Chen , Yue Tang , Si Meng , Zunfa Wang , Liyu Wang , Jiabao Xing , Xinyu Zhang , Jiahui Huang , Jiangbo Lu , Hongmei Jing , Xiangyu Liu , Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029
-
[6]
Qizhi Yao , Gu Jin , Pingping Zhu . Modular Analytical Chemistry Experimental Teaching Based on “Comprehensive + Exploratory” Experiments: “One Student, One Plan”, Individualized Experimental Teaching Method. University Chemistry, 2024, 39(3): 143-148. doi: 10.3866/PKU.DXHX202309071
-
[7]
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081
-
[8]
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
-
[9]
Cen Zhou , Biqiong Hong , Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086
-
[10]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[11]
Jia Yao , Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117
-
[12]
Cunming Yu , Dongliang Tian , Jing Chen , Qinglin Yang , Kesong Liu , Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008
-
[13]
Yongjie ZHANG , Bintong HUANG , Yueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247
-
[14]
Zhuo WANG , Xiaotong LI , Zhipeng HU , Junqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223
-
[15]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[16]
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
-
[17]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
-
[18]
Hao Ren , Wen Zhao , Fangna Dai , Wenyue Guo . Finite Difference Solution of One-Dimensional Quantum Systems: (1) Fundamental Concepts and Infinite Square Well. University Chemistry, 2025, 40(3): 124-131. doi: 10.12461/PKU.DXHX202405145
-
[19]
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
-
[20]
Chi Zhang , Suqi Wu , An Liu , Wei Zhang , Xiao Wei . Application of Team-Based Learning Teaching Method in Inorganic Chemistry Course: the Design Case of Inorganic Chemistry Teaching in Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 89-95. doi: 10.12461/PKU.DXHX202409135
-
[1]
Metrics
- PDF Downloads(454)
- Abstract views(1342)
- HTML views(128)