Citation: XU Hai-Ying, KAN Cai-Xia, WANG Chang-Shun, NI Yuan, LIU Jin-Sheng, XU Wei, KE Jun-Hua. Ultrafine Au Nanowires Synthesized via One-Step Wet Chemical Method[J]. Acta Physico-Chimica Sinica, ;2015, 31(6): 1186-1190. doi: 10.3866/PKU.WHXB201504012 shu

Ultrafine Au Nanowires Synthesized via One-Step Wet Chemical Method

  • Received Date: 19 January 2015
    Available Online: 1 April 2015

    Fund Project: 国家自然科学基金(11274173) (11274173) 中央高校基本科研专项资金(NZ2015101, NJ20140005) (NZ2015101, NJ20140005) 江苏省研究生培养创新工程(KYZZ_0091) (KYZZ_0091)

  • Ultrafine Au nanowires (AuNWs) were synthesized in high yields by a one-step wet chemical method using oleylamine as the solvent, surfactant, and reductant. The obtained AuNWs were of high purity and had a high aspect ratio, with diameters of ~2 nm and lengths of tens of micrometers. AuNWs of diameter ~9 nm were also obtained in the presence of oleic acid, at an oleic acid:oleylamine volume ratio of 1:1. The formation of AuNWs was studied by changing the reaction temperature and the volume of oleylamine. It is proposed that the growth mechanism of the Au nanostructures involves strong aurophilic interactions from oleylamine-AuCl complexes; the reduced Au atoms agglomerate and attach to preformed particles, and the oleylamine molecular layer acts as a soft template, leading to one-dimensional growth of Au atoms into AuNWs.

  • 加载中
    1. [1]

      (1) Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Angew. Chem. Int. Edit. 2009, 48, 60. doi: 10.1002/anie.200802248

    2. [2]

      (2) Cui, Y.; Wei, Q. Q.; Park, H. K.; Lieber, C. M. Science 2001, 293, 1289. doi: 10.1126/science.1062711

    3. [3]

      (3) Hu, S.; Wang, X. Chem. Soc. Rev. 2013, 42, 5577. doi: 10.1039/c3cs00006k

    4. [4]

      (4) Wiley, B.; Sun, Y. G.; Xia, Y. N. Accounts Chem. Res. 2007, 40, 1067. doi: 10.1021/ar7000974

    5. [5]

      (5) Halder, A.; Ravishankar, N. Adv. Mater. 2007, 19, 1854.

    6. [6]

      (6) Hu, Y.; Lu, L. H.; Liu, J. H.; Chen, W. J. Mater. Chem. 2012, 22, 11994. doi: 10.1039/c2jm31483e

    7. [7]

      (7) Li, C. C.; Cai, W. P.; Kan, C. X.; Zhang, L. D. Mater. Lett. 2004, 58, 196. doi: 10.1016/S0167-577X(03)00444-0

    8. [8]

      (8) Lacroix, L. M.; Arenal, R.; Viau, G. J. Am. Chem. Soc. 2014, 136, 13075. doi: 10.1021/ja507728j

    9. [9]

      (9) Takahata, R.; Yamazoe, S.; Koyasu, K.; Tsukuda, T. J. Am. Chem. Soc. 2014, 136, 8489. doi: 10.1021/ja503558c

    10. [10]

      (10) Kempa, T. J.; Kim, S. K.; Day, R.W.; Park, H. G.; Nocera, D. G.; Lieber, C. M. J. Am. Chem. Soc. 2013, 135, 18354. doi: 10.1021/ja411050r

    11. [11]

      (11) Long, Y. T.; Zhang, M. N. Sci. China Chem. 2009, 52, 731.

    12. [12]

      (12) Kan, C. X.; Wang, C. S.; Li, H. C.; Qi, J. S.; Zhu, J. J.; Li, Z. S.; Shi, D. N. Small 2010, 6, 1768. doi: 10.1002/smll.201000600

    13. [13]

      (13) Kan, C. X.; Zhu, J. J.; Zhu, X. G. Journal of Physics D-Applied Physics 2008, 41, 155304. doi: 10.1088/0022-3727/41/15/155304

    14. [14]

      (14) Murphy, C. J.; Thompson, L. B.; Chernak, D. J.; Yang, J. A.; Sivapalan, S. T.; Boulos, S. P.; Huang, J. Y.; Alkilany, A. M.; Sisco, P. N. Current Opinion in Colloid & Interface Science 2011, 16, 128.

    15. [15]

      (15) Li, C. C.; Sun, L.; Sun, Y. Q.; Teranishi, T. Chem. Mater. 2013, 25, 2580. doi: 10.1021/cm400392e

    16. [16]

      (16) Millstone, J. E.; Hurst, S. J.; Metraux, G. S.; Cutler, J. I.; Mirkin, C. A. Small 2009, 5, 646. doi: 10.1002/smll.v5:6

    17. [17]

      (17) Dertli, E.; Coskun, S.; Esenturk, E. N. J. Mater. Res. 2013, 28, 250. doi: 10.1557/jmr.2012.407

    18. [18]

      (18) Sinha, A. K.; Basu, M.; Sarkar, S.; Pradhan, M.; Pal, T. Langmuir 2010, 26, 17419. doi: 10.1021/la102387x

    19. [19]

      (19) Kim, J. U.; Cha, S. H.; Shin, K.; Jho, J. Y.; Lee, J. C. Adv. Mater. 2004, 16, 459.

    20. [20]

      (20) Wang, J. G.; Tian, M. L.; Mallouk, T. E.; Chan, M. H.W. J. Phys. Chem. B 2004, 108, 841. doi: 10.1021/jp035068q

    21. [21]

      (21) Forrer, P.; Schlottig, F.; Siegenthaler, H.; Textor, M. J. Appl. Electrochem. 2000, 30, 533. doi: 10.1023/A:1003941129560

    22. [22]

      (22) Wang, J. Faraday Discuss. 2013, 164, 9. doi: 10.1039/c3fd00105a

    23. [23]

      (23) Li, Y.; Koshizaki, N.; Cai, W. P. Coord. Chem. Rev. 2011, 255, 357. doi: 10.1016/j.ccr.2010.09.015

    24. [24]

      (24) Dar, F. I.; Habouti, S.; Minch, R.; Dietze, M.; Es-Souni, M. J. Mater. Res. 2012, 22, 8671.

    25. [25]

      (25) Morita, C.; Tanuma, H.; Kawai, C; Ito, Y.; Imura, Y.; Kawai, T. Langmuir 2013, 29, 1669. doi: 10.1021/la304925e

    26. [26]

      (26) Mizoguchi, D.; Murouchi, M.; Hirata, H.; Takata, Y.; Niidome, Y.; Yamada, S. J. Nanopart. Res. 2011, 13, 6297. doi: 10.1007/s11051-011-0555-0

    27. [27]

      (27) Kura, H.; Ogawa, T. J. Appl. Phys. 2010, 107, 074310. doi: 10.1063/1.3369441

    28. [28]

      (28) Huo, Z. Y.; Tsung, C. K.; Huang, W. Y.; Zhang, X. F.; Yang, P. D. Nano Lett. 2008, 8, 2041. doi: 10.1021/nl8013549

    29. [29]

      (29) Ohnishi, H.; Kondo, Y.; Takayanagi, K. Nature 1998, 395, 780. doi: 10.1038/27399

    30. [30]

      (30) Kondo, Y.; Takayanagi, K. Science 2000, 289, 606. doi: 10.1126/science.289.5479.606

    31. [31]

      (31) Pazos-Perez, N.; Baranov, D.; Irsen, S.; Hilgendorff, M.; Liz-Marzan, L. M.; Giersig, M. Langmuir 2008, 24, 9855. doi: 10.1021/la801675d

    32. [32]

      (32) Wang, C.; Hu, Y.; Lieber, C. M.; Sun, S. J. Am. Chem. Soc. 2008, 130, 8902. doi: 10.1021/ja803408f

    33. [33]

      (33) Oo, T. Z.; Mathews, N.; Xing, G. C.; Wu, B.; Xing, B. G.; Wong, L. H.; Sum, T. C.; Mhaisalkar, S. G. J. Phys. Chem. C 2012, 116, 6453. doi: 10.1021/jp2099637

    34. [34]

      (34) Pud, S.; Kisner, A.; Heggen, M.; Belaineh, D.; Temirov, R.; Simon, U.; Offenhausser, A.; Mourzina, Y.; Vitusevich, S. Small 2013, 9, 846. doi: 10.1002/smll.v9.6

    35. [35]

      (35) Yoshihira, M.; Moriyama, S.; Guerin, H.; Ochi, Y.; Kura, H.; Ogawa, T.; Sato, T.; Maki, H. Appl. Phys. Lett. 2013, 102, 203117-1. doi: 10.1063/1.4807806

    36. [36]

      (36) Wang, C.; Sun, S. H. Chem. Asian J. 2009, 4, 1028. doi: 10.1002/asia.v4:7

    37. [37]

      (37) Lu, Y.; Song, J.; Huang, J. Y.; Lou, J. Adv. Funct. Mater. 2011, 21, 3982. doi: 10.1002/adfm.v21.20

    38. [38]

      (38) Lu, W.; Lieber, C. M. Nat. Mater. 2007, 6, 841. doi: 10.1038/nmat2028

    39. [39]

      (39) Feng, H.; Yang, Y.; You, Y.; Li, G.; Guo, J.; Yu, T.; Shen, Z.; Wu, T.; Xing, B. Chem. Commun. 2009, 1984.

    40. [40]

      (40) Lu, X. M.; Yavuz, M. S.; Tuan, H. Y.; Korgel, B. A.; Xia, Y. N. J. Am. Chem. Soc. 2008, 130, 8900. doi: 10.1021/ja803343m

    41. [41]

      (41) Huang, X.; Li, S.; Wu, S.; Huang, Y.; Boey, F.; Gan, C. L.; Zhang, H. Adv. Mater. 2012, 24, 979. doi: 10.1002/adma.201104153

    42. [42]

      (42) He, J.; Wang, Y.; Feng, Y.; Qi, X.; Zeng, Z.; Liu, Q.; Teo, W. S.; Gan, C. L.; Zhang, H.; Chen, H. ACS Nano 2013, 7, 2733. doi: 10.1021/nn4001885


  • 加载中
    1. [1]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    2. [2]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    3. [3]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    4. [4]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    5. [5]

      Qizhi Yao Gu Jin Pingping Zhu . Modular Analytical Chemistry Experimental Teaching Based on “Comprehensive + Exploratory” Experiments: “One Student, One Plan”, Individualized Experimental Teaching Method. University Chemistry, 2024, 39(3): 143-148. doi: 10.3866/PKU.DXHX202309071

    6. [6]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    7. [7]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    8. [8]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    9. [9]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    10. [10]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    11. [11]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    12. [12]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    13. [13]

      Chi Zhang Suqi Wu An Liu Wei Zhang Xiao Wei . Application of Team-Based Learning Teaching Method in Inorganic Chemistry Course: the Design Case of Inorganic Chemistry Teaching in Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 89-95. doi: 10.12461/PKU.DXHX202409135

    14. [14]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    15. [15]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    16. [16]

      Yinuo Wu Jiantao Ye Xie Zhou Yu Qian Lei Guo . Teaching Design of Basic Chemistry Based on PBL Methodology for Medical Undergraduates: A Case Study on “Osmotic Pressure of Solution”. University Chemistry, 2024, 39(3): 149-157. doi: 10.3866/PKU.DXHX202309077

    17. [17]

      Shengyan Yang Xiangzhen Meng Xin Wang Yang Zhang . Construction and Exploration of an Online-Offline Blended “Eight-Link” Teaching Method for Physical Chemistry Experiments Based on OBE Concept. University Chemistry, 2024, 39(11): 28-37. doi: 10.3866/PKU.DXHX202402019

    18. [18]

      Zhonghua Xi Xuanfeng Kong Jinyue Yang Bin Liu Tingyu Zhu Hui Zhang Wenwei Zhang . Construction of Public Teaching Instrument Platform and Exploration of Opening Mechanism. University Chemistry, 2024, 39(7): 200-206. doi: 10.12461/PKU.DXHX202405123

    19. [19]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    20. [20]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

Metrics
  • PDF Downloads(454)
  • Abstract views(1270)
  • HTML views(123)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return