Citation: LI Zhen-Jiang, MA Feng-Lin, ZHANG Meng, SONG Guan-Ying, MENG A-Lan. Preparation, Field Emission Characteristics and First-Principles Calculations of La-Doped or N-Doped SiC Nanowires[J]. Acta Physico-Chimica Sinica, ;2015, 31(6): 1191-1198. doi: 10.3866/PKU.WHXB201504011 shu

Preparation, Field Emission Characteristics and First-Principles Calculations of La-Doped or N-Doped SiC Nanowires

  • Received Date: 15 December 2014
    Available Online: 1 April 2015

    Fund Project: 国家自然科学基金(51272117, 51172115) (51272117, 51172115) 高等学校博士学科点专项科研基金(20123719110003) (20123719110003) 山东省科技攻关项目基金(2012GGX10218) (2012GGX10218)青岛市应用基础研究计划项目(13-1-4-117-jch)资助 (13-1-4-117-jch)

  • La- and N-doped SiC nanowires were prepared using a vapor-phase doping method and chemical vapor deposition method, respectively. The morphologies, element analysis, and crystal structures of the products were characterized by field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), selected area electron diffraction (SAED), high-resolution transmission electron microscope (HRTEM), X-ray energy dispersive spectrum (EDS), and X-ray diffraction (XRD). The field emission properties of the nanowires doped with different elements were tested by field emission measurements, and the results show that the turn on field (Eto) and threshold field (Ethr) of La-doped SiC nanowires are 1.2 and 5.2 V·μm-1, and those of N-doped SiC nanowires are 0.9 and 4.0 V·μm-1, respectively, these values are clearly lower than those of 2.3 and 6.6 V·μm-1 for undoped SiC nanowires. In addition, the density of states (DOS) and band structures of undoped, N-doped, and La-doped, SiC nanowires were also calculated using Castep of material studio on the basis of the first-principles. The results of the theoretical calculations suggest that the narrower gap may be attributed to the impurity energy level (La 5d or N 2p) generated near the Fermi level. Because of the narrower gap, electrons transfer from the valence band maximum (VBM) to conduction band minimum (CBM) need less energy, and this enhances the field emission property.

  • 加载中
    1. [1]

      (1) Casady, J. B.; Johnson, R.W. Solid-State Electron 1996, 39, 1409. doi: 10.1016/0038-1101(96)00045-7

    2. [2]

      (2) Wong, E.W.; Sheehan, P. E.; Lieber, C. M. Science 1997, 277, 1971. doi: 10.1126/science.277.5334.1971

    3. [3]

      (3) Fan, J.; Wu, X.; Chu, P. K. Prog. Mater. Sci. 2006, 51, 983. doi: 10.1016/j.pmatsci.2006.02.001

    4. [4]

      (4) Xu, W.; Zhang, Y.; Guo, Z.; Chen, X.; Liu, J.; Huang, X.; Yu, S. H. Small 2012, 8, 53. doi: 10.1002/smll.201101445

    5. [5]

      (5) Lin, Y.W.; Chen, W. J.; Lu, J. Y.; Chang, Y. H.; Liang, C. T.; Chen, Y. F.; Lu, J. Y. Nanoscale Res. Lett. 2012, 7, 401. doi: 10.1186/1556-276X-7-401

    6. [6]

      (6) Wong, K.W.; Zhou, X. T.; Au, F. C. Applied Physics Letters 1999, 75, 2918. doi: 10.1063/1.125189

    7. [7]

      (7) Huang, S.; Zhu, F.; Xiao, Q.; Su, W.; Sheng, J.; Huang, C.; Hu, B. RSC Adv. 2014, 4, 46751. doi: 10.1039/C4RA08169B

    8. [8]

      (8) Zhang, M.; Li, Z. J.; Zhao, J.; Meng, A. L.; Ma, F. L.; ng, L. RSC Adv. 2014, 4, 55224.

    9. [9]

      (9) Zhang, M.; Li, Z. J.; Zhao, J.; ng, L.; Meng, A. L.; Liu, X. L.; Fan, X. Y.; Qi, X. L. J. Mater. Chem. C 2015, 3, 658. doi: 10.1039/C4TC01658K

    10. [10]

      (10) Zhang, X. N.; Chen, Y. Q.; Xie, Z. P.; Yang, W. Y. J. Phys. Chem. C 2010, 114, 8251. doi: 10.1021/jp101067f

    11. [11]

      (11) Chen, S. L.; Ying, P. Z.; Wang, L.; Wei, G. D.; Zheng, J. J.; Gao, F. M.; Su, S. B.; Yang, W. Y. J. Mater. Chem. C 2013, 1, 4779.

    12. [12]

      (12) Yang, Y.; Yang, H.; Wei, G. D.; Wang, L.; Shang, M. H.; Yang, Z. B.; Tang, B.; Yang, W. Y. J. Mater. Chem. C 2014, 2, 4515. doi: 10.1039/c4tc00524d

    13. [13]

      (13) Zhang, H.; Li, M. K.; Zhang, J.; Yu, L. Y.; Liu, L. L.; Yang, Z. Acta Phys. -Chim. Sin. 2010, 26 (9), 2563. [张欢, 李梦轲, 张竞, 于丽媛, 刘玲玲, 杨志. 2010, 26 (9), 2563.]

    14. [14]

      (14) Zhang, Q. F.; Yu, J.; Song, J. H.; Zhang, G. M.; Zhang, Z. X.; Xue, Z. Q.; Wu, J. L. Acta Phys. -Chim. Sin. 2004, 20 (4), 409. [张琦锋, 于洁, 宋教花, 张耿民, 张兆祥, 薛增泉, 吴锦雷. 物理化学学报, 2004, 20 (4), 409.] doi: 10.3866/PKU.WHXB20040409

    15. [15]

      (15) Li, H. Y.; Jiao, J. Acta Phys. -Chim. Sin. 2009, 25 (3), 401. [李海燕, 焦军. 物理化学学报, 2009, 25 (3), 401.] doi: 10.3866/PKU.WHXB20090301

    16. [16]

      (16) Zhu, C.; Yang, Y.; Liang, X. Journal of Luminescence 2007, 126, 707. doi: 10.1016/j.jlumin.2006.10.028

    17. [17]

      (17) Giovanella, U.; Pasini, M.; Freund, C.; Botta, C.; Porzio, W.; Destri, S. J. Phys. Chem. C 2009, 113, 2290. doi: 10.1021/jp809088n

    18. [18]

      (18) Martin, R. Springer Netherlands 2010, 33, 189.

    19. [19]

      (19) Niu, X. S.; Li, H. H.; Liu, G. G. Journal of Molecular Catalysis A: Chemical 2005, 232, 89. doi: 10.1016/j.molcata.2005.01.022

    20. [20]

      (20) Yu, C. L.; Yang, K.; Yu, J. M.; Peng, P.; Cao, F. F.; Li, X.; Zhou, X. C. Acta Phys. -Chim. Sin. 2011, 27 (2), 505. [余长林, 杨凯, 余济美, 彭鹏, 操芳芳, 李鑫, 周晓春. 物理化学学报, 2011, 27 (2), 505.] doi: 10.3866/PKU.WHXB20110230

    21. [21]

      (21) Yu, D.; Liu, Q.; Liu, Q. F. Acta Phys. -Chim. Sin. 2008, 24 (4), 695. [余岛, 刘茜, 刘庆峰. 物理化学学报, 2008, 24 (4), 695.] doi: 10.3866/PKU.WHXB20080426

    22. [22]

      (22) Li, Z. J.; Zhao, J.; Zhang, M.; Xia, J. Y.; Meng, A. L. Nano Res. 2014, 7, 462. doi: 10.1007/s12274-014-0413-3

    23. [23]

      (23) Li, Z. J.; Gao, W.; Meng, A. L.; Geng, Z.; Gao, L. J. Phys. Chem. C 2009, 113, 91. doi: 10.1021/jp806346d

    24. [24]

      (24) Misaizu, F.; Houston, P. L.; Nishi, N.; Shinohara, H.; Kondow, T.; Kinoshita, M. J. Phys. Chem. 1989, 93, 7041. doi: 10.1021/j100357a002

    25. [25]

      (25) Fowler, R. H.; Nordheim, L. Proceedings of the Royal Society of London Series A-Containing Papers of a Mathematical and Physical Character 1928, 119, 173. doi: 10.1098/rspa.1928.0091

    26. [26]

      (26) Galeckas, A.; Linnros, J.; Pirouz, P. Appl. Phys. Lett. 2002, 81, 883. doi: 10.1063/1.1496498

    27. [27]

      (27) Zhang, Z. K.; Dai, Y.; Yu, L.; Guo, M.; Huang, B. B.; Whangbo, M. H. Nanoscale 2012, 4, 1592. doi: 10.1039/c2nr12099b

    28. [28]

      (28) Li, Z. J.; Sun, S. Y.; Xu, X.; Zheng, B.; Meng, A. L. Catalysis Communications 2011, 12, 890. doi: 10.1016/j.catcom.2011.02.008


  • 加载中
    1. [1]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    2. [2]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    3. [3]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    4. [4]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    5. [5]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    6. [6]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    7. [7]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    10. [10]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    13. [13]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    14. [14]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    15. [15]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    16. [16]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    17. [17]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    18. [18]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    19. [19]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    20. [20]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

Metrics
  • PDF Downloads(350)
  • Abstract views(917)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return