Citation: LI Zhen-Jiang, MA Feng-Lin, ZHANG Meng, SONG Guan-Ying, MENG A-Lan. Preparation, Field Emission Characteristics and First-Principles Calculations of La-Doped or N-Doped SiC Nanowires[J]. Acta Physico-Chimica Sinica, ;2015, 31(6): 1191-1198. doi: 10.3866/PKU.WHXB201504011 shu

Preparation, Field Emission Characteristics and First-Principles Calculations of La-Doped or N-Doped SiC Nanowires

  • Received Date: 15 December 2014
    Available Online: 1 April 2015

    Fund Project: 国家自然科学基金(51272117, 51172115) (51272117, 51172115) 高等学校博士学科点专项科研基金(20123719110003) (20123719110003) 山东省科技攻关项目基金(2012GGX10218) (2012GGX10218)青岛市应用基础研究计划项目(13-1-4-117-jch)资助 (13-1-4-117-jch)

  • La- and N-doped SiC nanowires were prepared using a vapor-phase doping method and chemical vapor deposition method, respectively. The morphologies, element analysis, and crystal structures of the products were characterized by field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), selected area electron diffraction (SAED), high-resolution transmission electron microscope (HRTEM), X-ray energy dispersive spectrum (EDS), and X-ray diffraction (XRD). The field emission properties of the nanowires doped with different elements were tested by field emission measurements, and the results show that the turn on field (Eto) and threshold field (Ethr) of La-doped SiC nanowires are 1.2 and 5.2 V·μm-1, and those of N-doped SiC nanowires are 0.9 and 4.0 V·μm-1, respectively, these values are clearly lower than those of 2.3 and 6.6 V·μm-1 for undoped SiC nanowires. In addition, the density of states (DOS) and band structures of undoped, N-doped, and La-doped, SiC nanowires were also calculated using Castep of material studio on the basis of the first-principles. The results of the theoretical calculations suggest that the narrower gap may be attributed to the impurity energy level (La 5d or N 2p) generated near the Fermi level. Because of the narrower gap, electrons transfer from the valence band maximum (VBM) to conduction band minimum (CBM) need less energy, and this enhances the field emission property.

  • 加载中
    1. [1]

      (1) Casady, J. B.; Johnson, R.W. Solid-State Electron 1996, 39, 1409. doi: 10.1016/0038-1101(96)00045-7

    2. [2]

      (2) Wong, E.W.; Sheehan, P. E.; Lieber, C. M. Science 1997, 277, 1971. doi: 10.1126/science.277.5334.1971

    3. [3]

      (3) Fan, J.; Wu, X.; Chu, P. K. Prog. Mater. Sci. 2006, 51, 983. doi: 10.1016/j.pmatsci.2006.02.001

    4. [4]

      (4) Xu, W.; Zhang, Y.; Guo, Z.; Chen, X.; Liu, J.; Huang, X.; Yu, S. H. Small 2012, 8, 53. doi: 10.1002/smll.201101445

    5. [5]

      (5) Lin, Y.W.; Chen, W. J.; Lu, J. Y.; Chang, Y. H.; Liang, C. T.; Chen, Y. F.; Lu, J. Y. Nanoscale Res. Lett. 2012, 7, 401. doi: 10.1186/1556-276X-7-401

    6. [6]

      (6) Wong, K.W.; Zhou, X. T.; Au, F. C. Applied Physics Letters 1999, 75, 2918. doi: 10.1063/1.125189

    7. [7]

      (7) Huang, S.; Zhu, F.; Xiao, Q.; Su, W.; Sheng, J.; Huang, C.; Hu, B. RSC Adv. 2014, 4, 46751. doi: 10.1039/C4RA08169B

    8. [8]

      (8) Zhang, M.; Li, Z. J.; Zhao, J.; Meng, A. L.; Ma, F. L.; ng, L. RSC Adv. 2014, 4, 55224.

    9. [9]

      (9) Zhang, M.; Li, Z. J.; Zhao, J.; ng, L.; Meng, A. L.; Liu, X. L.; Fan, X. Y.; Qi, X. L. J. Mater. Chem. C 2015, 3, 658. doi: 10.1039/C4TC01658K

    10. [10]

      (10) Zhang, X. N.; Chen, Y. Q.; Xie, Z. P.; Yang, W. Y. J. Phys. Chem. C 2010, 114, 8251. doi: 10.1021/jp101067f

    11. [11]

      (11) Chen, S. L.; Ying, P. Z.; Wang, L.; Wei, G. D.; Zheng, J. J.; Gao, F. M.; Su, S. B.; Yang, W. Y. J. Mater. Chem. C 2013, 1, 4779.

    12. [12]

      (12) Yang, Y.; Yang, H.; Wei, G. D.; Wang, L.; Shang, M. H.; Yang, Z. B.; Tang, B.; Yang, W. Y. J. Mater. Chem. C 2014, 2, 4515. doi: 10.1039/c4tc00524d

    13. [13]

      (13) Zhang, H.; Li, M. K.; Zhang, J.; Yu, L. Y.; Liu, L. L.; Yang, Z. Acta Phys. -Chim. Sin. 2010, 26 (9), 2563. [张欢, 李梦轲, 张竞, 于丽媛, 刘玲玲, 杨志. 2010, 26 (9), 2563.]

    14. [14]

      (14) Zhang, Q. F.; Yu, J.; Song, J. H.; Zhang, G. M.; Zhang, Z. X.; Xue, Z. Q.; Wu, J. L. Acta Phys. -Chim. Sin. 2004, 20 (4), 409. [张琦锋, 于洁, 宋教花, 张耿民, 张兆祥, 薛增泉, 吴锦雷. 物理化学学报, 2004, 20 (4), 409.] doi: 10.3866/PKU.WHXB20040409

    15. [15]

      (15) Li, H. Y.; Jiao, J. Acta Phys. -Chim. Sin. 2009, 25 (3), 401. [李海燕, 焦军. 物理化学学报, 2009, 25 (3), 401.] doi: 10.3866/PKU.WHXB20090301

    16. [16]

      (16) Zhu, C.; Yang, Y.; Liang, X. Journal of Luminescence 2007, 126, 707. doi: 10.1016/j.jlumin.2006.10.028

    17. [17]

      (17) Giovanella, U.; Pasini, M.; Freund, C.; Botta, C.; Porzio, W.; Destri, S. J. Phys. Chem. C 2009, 113, 2290. doi: 10.1021/jp809088n

    18. [18]

      (18) Martin, R. Springer Netherlands 2010, 33, 189.

    19. [19]

      (19) Niu, X. S.; Li, H. H.; Liu, G. G. Journal of Molecular Catalysis A: Chemical 2005, 232, 89. doi: 10.1016/j.molcata.2005.01.022

    20. [20]

      (20) Yu, C. L.; Yang, K.; Yu, J. M.; Peng, P.; Cao, F. F.; Li, X.; Zhou, X. C. Acta Phys. -Chim. Sin. 2011, 27 (2), 505. [余长林, 杨凯, 余济美, 彭鹏, 操芳芳, 李鑫, 周晓春. 物理化学学报, 2011, 27 (2), 505.] doi: 10.3866/PKU.WHXB20110230

    21. [21]

      (21) Yu, D.; Liu, Q.; Liu, Q. F. Acta Phys. -Chim. Sin. 2008, 24 (4), 695. [余岛, 刘茜, 刘庆峰. 物理化学学报, 2008, 24 (4), 695.] doi: 10.3866/PKU.WHXB20080426

    22. [22]

      (22) Li, Z. J.; Zhao, J.; Zhang, M.; Xia, J. Y.; Meng, A. L. Nano Res. 2014, 7, 462. doi: 10.1007/s12274-014-0413-3

    23. [23]

      (23) Li, Z. J.; Gao, W.; Meng, A. L.; Geng, Z.; Gao, L. J. Phys. Chem. C 2009, 113, 91. doi: 10.1021/jp806346d

    24. [24]

      (24) Misaizu, F.; Houston, P. L.; Nishi, N.; Shinohara, H.; Kondow, T.; Kinoshita, M. J. Phys. Chem. 1989, 93, 7041. doi: 10.1021/j100357a002

    25. [25]

      (25) Fowler, R. H.; Nordheim, L. Proceedings of the Royal Society of London Series A-Containing Papers of a Mathematical and Physical Character 1928, 119, 173. doi: 10.1098/rspa.1928.0091

    26. [26]

      (26) Galeckas, A.; Linnros, J.; Pirouz, P. Appl. Phys. Lett. 2002, 81, 883. doi: 10.1063/1.1496498

    27. [27]

      (27) Zhang, Z. K.; Dai, Y.; Yu, L.; Guo, M.; Huang, B. B.; Whangbo, M. H. Nanoscale 2012, 4, 1592. doi: 10.1039/c2nr12099b

    28. [28]

      (28) Li, Z. J.; Sun, S. Y.; Xu, X.; Zheng, B.; Meng, A. L. Catalysis Communications 2011, 12, 890. doi: 10.1016/j.catcom.2011.02.008


  • 加载中
    1. [1]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    2. [2]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    3. [3]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    4. [4]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    5. [5]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    8. [8]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    9. [9]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    10. [10]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    11. [11]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    12. [12]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    13. [13]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    14. [14]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    17. [17]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    18. [18]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    19. [19]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    20. [20]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

Metrics
  • PDF Downloads(350)
  • Abstract views(856)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return