Citation: LI Hao, DENG Yong-Hong, ZHANG Xiao-Hong, QIU Xue-Qing. Influence of Temperature on Microstructure and Physicochemical Properties of Alkali Lignin in Aqueous Solution[J]. Acta Physico-Chimica Sinica, ;2015, 31(6): 1118-1128. doi: 10.3866/PKU.WHXB201503271 shu

Influence of Temperature on Microstructure and Physicochemical Properties of Alkali Lignin in Aqueous Solution

  • Received Date: 2 March 2015
    Available Online: 27 March 2015

    Fund Project: 国家重点基础研究发展规划项目(973) (2012CB215302) (973) (2012CB215302)国家自然科学基金(21436004, 21374032)资助 (21436004, 21374032)

  • The effects of temperature on the microstructure and physicochemical properties of alkali lignin (AL) in alkaline aqueous solutions were studied at 20-60 ℃. The relationships between temperature and the physicochemical properties of AL, such as the aggregation morphology, molecular surface charge and hydrophobicity, intrinsic viscosity, adsorption characteristics on gas-liquid and liquid- solid interfaces were investigated experimentally using particle charge detection, dynamic light scattering, zeta plus measurements, viscometry, surface tension and dynamic contact angle measurements, quartz crystal microbalance, ultravioletvisible and fluorescence spectroscopies. As the temperature increases, the molecular surface charge density, the intrinsic viscosity, and surface tension of the AL solution decrease significantly. In contrast, the molecular hydrophobicity, intermolecular and intramolecular aggregations, and the amount of AL adsorbed onto liquid-solid interface increase. The AL molecular state changes from extended to compact with increasing temperature. Furthermore, when the temperature increases, the absolute value of the zeta potential first decreases, then increases, and then decreases again. Analysis suggests that the increase in temperature not only reduces the ionization degree of the weak acidic groups in AL, but also weakens the hydrogen bonds between ALmolecules and water molecules. These two factors lead directly to changes in the AL microstructure and physicochemical properties. Based on the results of this study, a mechanism for the microstructural changes in AL with changing temperature was proposed. It was concluded that water would transform from a od solvent to a poor solvent with decreasing temperature. Although AL is often viewed as an anionic surfactant, the regular changes in its physicochemical properties with temperature are more like those of a nonionic surfactant.

  • 加载中
    1. [1]

      (1) Sarkanen, S.; Teller, D. C.; Abramowski, E.; Mccarthy, J. L. Macromolecules 1982, 15, 1098. doi: 10.1021/ma00232a027

    2. [2]

      (2) Gupta, P. R.; ring, D. A. I. Can. J. Chem. 1960, 38, 248. doi: 10.1139/v60-034

    3. [3]

      (3) Shen, Q.; Rosenholm, J. B. Nord. Pulp. Pap. Res. J. 1998, 13, 206. doi: 10.3183/NPPRJ-1998-13-03-p206-210

    4. [4]

      (4) Yang, D. J.; Wu, X. L.; Qiu, X. Q.; Chang, Y. Q.; Lou, H. M. Bioresource Technol. 2014, 155, 418. doi: 10.1016/j.biortech.2013.12.017

    5. [5]

      (5) Lou, H. M.; Lai, H. R.; Wang, M. X.; Pang, Y. X.; Yang, D. J.; Qiu, X. Q.; Wang, B.; Zhang, H. B. Ind. Eng. Chem. Res. 2013, 52, 16101. doi: 10.1021/ie402169g

    6. [6]

      (6) Zhou, M. S.; Kong, Q.; Pan, B.; Qiu, X. Q.; Yang, D. J.; Lou, H. M. Fuel 2010, 89, 716. doi: 10.1016/j.fuel.2009.09.015

    7. [7]

      (7) Li, Z. L.; Pang, Y. X.; Ge, Y. Y.; Qiu, X. Q. J. Phys. Chem. C 2011, 115, 24865. doi: 10.1021/jp2083117

    8. [8]

      (8) Ouyang, X. P.; Qiu, X. Q.; Lou, H. M.; Yang, D. Ind. Eng. Chem. Res. 2006, 45, 5716. doi: 10.1021/ie0513189

    9. [9]

      (9) Lin, X. L.; Zhou, M. S.; Wang, S. Y.; Lou, H. M.; Yang, D. J.; Qiu, X. Q. ACS. Sustain. Chem. Eng. 2014, 7, 1902.

    10. [10]

      (10) Qiu, X. Q.; Li, H.; Deng, Y. H.; Yian, Y.; Yi, C. H. Acta Polym. Sin. 2014, No. 11, 1458. [邱学青, 李浩, 邓永红, 钱勇, 易聪华. 高分子学报, 2014, No. 11, 1458.]

    11. [11]

      (11) Nieminen, K.; Kuitunen, S.; Paananen, M.; Sixta, H. Ind. Eng. Chem. Res. 2014, 53, 2614. doi: 10.1021/ie4028928

    12. [12]

      (12) Zhu, W.; Westman, G.; Theliander, H. Holzforschung 2014, 69, 143. doi: 10.1515/hf-2014-0062.

    13. [13]

      (13) Wallberg, O.; Jönsson, A. Chem. Eng. Res. Des. 2003, 81, 1379. doi: 10.1205/026387603771339591

    14. [14]

      (14) Azadi, P.; Inderwildi, O. R.; Farnood, R.; King, D. A. Renew Sust Energ. Rev. 2013, 21, 506. doi: 10.1016/j.rser.2012.12.022

    15. [15]

      (15) Liu, L. T.; Zhang, B.; Li, J.; Ma, D.; Kou, Y. Acta Phys. -Chim. Sin. 2012, 28, 2343. [刘凌涛, 张斌, 李晶, 马丁, 寇元. 物理化学学报, 2012, 28, 2343.] doi: 10.3866/PKU.WHXB201206152

    16. [16]

      (16) Yu, W. F.; Meng, X. G.; Liu, Y.; Li, X. H. Acta Phys. -Chim. Sin. 2013, 29, 2041. [于卫峰, 孟祥光, 刘莹, 李小红. 物理化学学报. 2013, 29, 2041.] doi: 10.3866/PKU.WHXB201306282

    17. [17]

      (17) Ringena, O.; Lebioda, S.; Lehnen, R.; Saake, B. J. Chromatogr. A 2006, 1102, 154. doi: 10.1016/j.chroma.2005.10.037

    18. [18]

      (18) Wisniewska, M.; Chibowski, S.; Urban, T. Colloid Interface Sci. 2009, 334, 146. doi: 10.1016/j.jcis.2009.03.006

    19. [19]

      (19) Ariga, K.; Okahata, Y. Langmuir 1994, 10, 2272. doi: 10.1021/la00019a041

    20. [20]

      (20) Liu, G.; Zhang, G. J. Phys. Chem. B 2004, 109, 743.

    21. [21]

      (21) Nestler, P.; Block, S.; Helm, C. A. J. Phys. Chem. B 2012, 116, 1234. doi: 10.1021/jp208837m

    22. [22]

      (22) Petridis, L.; Schulz, R.; Smith, J. C. J. Am. Chem. Soc. 2011, 133, 20277. doi: 10.1021/ja206839u

    23. [23]

      (23) Li, H.; Deng, Y. H.; Qiu, X. Q. Acta Phys. -Chim. Sin. 2015, 31, 128. [李浩, 邓永红, 邱学青. 物理化学学报, 2015, 31, 128.] doi: 10.3866/PKU.WHXB201411062

    24. [24]

      (24) Vu, T.; Chaffee, A.; Yarovsky, I. Mol. Simulat. 2002, 28, 981. doi: 10.1080/089270204000002610

    25. [25]

      (25) Norgren, M.; Bergfors, E. Wood Sci. Technol. 2005, 39, 512. doi: 10.1007/s00226-005-0008-y

    26. [26]

      (26) Satyanarayana, S. V.; Bhattacharya, P. K.; De, S. Sep. Purif. Technol. 2000, 20, 155. doi: 10.1016/S1383-5866(00)00086-1

    27. [27]

      (27) Chauhan, S.; Chauhan, M. S.; Sharma, P.; Rana, D. S. J. Mol. Liq. 2013, 187, 1. doi: 10.1016/j.molliq.2013.06.001

    28. [28]

      (28) Zhao, L.; Yan, Y.; Huang, J. B. Acta Phys. -Chim. Sin. 2010, 26, 840. [赵莉, 阎云, 黄建滨. 物理化学学报, 2010, 26, 840.] doi: 10.3866/PKU.WHXB20100429

    29. [29]

      (29) Qiu, X. Q.; Li, H.; Deng, Y. H.; Ouyang, X. P. Acta Polym. Sin. 2014, No. 9, 1281. [邱学青, 李浩, 邓永红, 欧阳新平. 高分子学报, 2014, No. 9, 1281.]

    30. [30]

      (30) Deng, Y. H.; Feng, X. J.; Zhou, M. S.; Qian, Y.; Yu, H. F.; Qiu, X. Q. Biomacromolecules 2011, 12, 116.


  • 加载中
    1. [1]

      Bing Sun . Practice of Ideological and Political Education in Physical Chemistry Courses for Non-Chemistry Majors. University Chemistry, 2024, 39(8): 28-35. doi: 10.3866/PKU.DXHX202311080

    2. [2]

      Tongqi Ye Qi Wang Yuewen Ye Yanqing Wang Hongyang Zhou Xianghua Kong . Reflection on the Reform of Physical Chemistry Teaching under the Background of “Intelligent Chemical Engineering”. University Chemistry, 2024, 39(3): 167-173. doi: 10.3866/PKU.DXHX202308116

    3. [3]

      Hongmei Zhao Ziqiang Lu Song Li Xingyu Li Chengting Zi Xingli Fan Xiangdong Qin . Exploration and Practice of Physical Chemistry Teaching under the Guidance of Course Ideological and Political Education. University Chemistry, 2024, 39(3): 210-217. doi: 10.3866/PKU.DXHX202309006

    4. [4]

      Youjun Fan Dandan Cai Wei Chen Jianhua Qiu . Exploration and Practice of Ideological and Political Education Reform in Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 119-124. doi: 10.3866/PKU.DXHX202310123

    5. [5]

      Jianmin Hao Ruifeng Wu Ying Wang Yijia Bai Xuechuan Gao Yuying Du . Reform and Practice of Physical Chemistry Course Based on Enhanced Process Assessment and Evaluation. University Chemistry, 2024, 39(8): 78-83. doi: 10.3866/PKU.DXHX202311103

    6. [6]

      Xu Liu Chengfang Liu Jie Huang Xiangchun Li Wenyong Lai . Research on the Application of Diversified Teaching Models in the Teaching of Physical Chemistry. University Chemistry, 2024, 39(8): 112-118. doi: 10.3866/PKU.DXHX202402021

    7. [7]

      Ruming Yuan Laiying Zhang Xiaoming Xu Pingping Wu Gang Fu . Application of Mathematica in Visualizing Physical Chemistry Formulas. University Chemistry, 2024, 39(8): 375-382. doi: 10.3866/PKU.DXHX202401030

    8. [8]

      Congyi Wu . Advice for Young Teachers to Promote Teaching Level of Physical Chemistry. University Chemistry, 2024, 39(11): 15-19. doi: 10.3866/PKU.DXHX202402054

    9. [9]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    10. [10]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    11. [11]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    12. [12]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    13. [13]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    14. [14]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    15. [15]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    16. [16]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    17. [17]

      Yanling Luo Xuejie Qi Rui Shen Xuling Peng Xiaoyan Han . Design and Implementation of Ideological and Political Education in the Physical Chemistry Course at Traditional Chinese Medicine Universities: A Case Study of the Phase Diagram of Water. University Chemistry, 2024, 39(11): 9-14. doi: 10.3866/PKU.DXHX202402003

    18. [18]

      Yanhui Sun Junmin Nan Guozheng Ma Xiaoxi Zuo Guoliang Li Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023

    19. [19]

      Shengyan Yang Xiangzhen Meng Xin Wang Yang Zhang . Construction and Exploration of an Online-Offline Blended “Eight-Link” Teaching Method for Physical Chemistry Experiments Based on OBE Concept. University Chemistry, 2024, 39(11): 28-37. doi: 10.3866/PKU.DXHX202402019

    20. [20]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

Metrics
  • PDF Downloads(353)
  • Abstract views(925)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return