Citation: LI Hao, DENG Yong-Hong, ZHANG Xiao-Hong, QIU Xue-Qing. Influence of Temperature on Microstructure and Physicochemical Properties of Alkali Lignin in Aqueous Solution[J]. Acta Physico-Chimica Sinica, ;2015, 31(6): 1118-1128. doi: 10.3866/PKU.WHXB201503271 shu

Influence of Temperature on Microstructure and Physicochemical Properties of Alkali Lignin in Aqueous Solution

  • Received Date: 2 March 2015
    Available Online: 27 March 2015

    Fund Project: 国家重点基础研究发展规划项目(973) (2012CB215302) (973) (2012CB215302)国家自然科学基金(21436004, 21374032)资助 (21436004, 21374032)

  • The effects of temperature on the microstructure and physicochemical properties of alkali lignin (AL) in alkaline aqueous solutions were studied at 20-60 ℃. The relationships between temperature and the physicochemical properties of AL, such as the aggregation morphology, molecular surface charge and hydrophobicity, intrinsic viscosity, adsorption characteristics on gas-liquid and liquid- solid interfaces were investigated experimentally using particle charge detection, dynamic light scattering, zeta plus measurements, viscometry, surface tension and dynamic contact angle measurements, quartz crystal microbalance, ultravioletvisible and fluorescence spectroscopies. As the temperature increases, the molecular surface charge density, the intrinsic viscosity, and surface tension of the AL solution decrease significantly. In contrast, the molecular hydrophobicity, intermolecular and intramolecular aggregations, and the amount of AL adsorbed onto liquid-solid interface increase. The AL molecular state changes from extended to compact with increasing temperature. Furthermore, when the temperature increases, the absolute value of the zeta potential first decreases, then increases, and then decreases again. Analysis suggests that the increase in temperature not only reduces the ionization degree of the weak acidic groups in AL, but also weakens the hydrogen bonds between ALmolecules and water molecules. These two factors lead directly to changes in the AL microstructure and physicochemical properties. Based on the results of this study, a mechanism for the microstructural changes in AL with changing temperature was proposed. It was concluded that water would transform from a od solvent to a poor solvent with decreasing temperature. Although AL is often viewed as an anionic surfactant, the regular changes in its physicochemical properties with temperature are more like those of a nonionic surfactant.

  • 加载中
    1. [1]

      (1) Sarkanen, S.; Teller, D. C.; Abramowski, E.; Mccarthy, J. L. Macromolecules 1982, 15, 1098. doi: 10.1021/ma00232a027

    2. [2]

      (2) Gupta, P. R.; ring, D. A. I. Can. J. Chem. 1960, 38, 248. doi: 10.1139/v60-034

    3. [3]

      (3) Shen, Q.; Rosenholm, J. B. Nord. Pulp. Pap. Res. J. 1998, 13, 206. doi: 10.3183/NPPRJ-1998-13-03-p206-210

    4. [4]

      (4) Yang, D. J.; Wu, X. L.; Qiu, X. Q.; Chang, Y. Q.; Lou, H. M. Bioresource Technol. 2014, 155, 418. doi: 10.1016/j.biortech.2013.12.017

    5. [5]

      (5) Lou, H. M.; Lai, H. R.; Wang, M. X.; Pang, Y. X.; Yang, D. J.; Qiu, X. Q.; Wang, B.; Zhang, H. B. Ind. Eng. Chem. Res. 2013, 52, 16101. doi: 10.1021/ie402169g

    6. [6]

      (6) Zhou, M. S.; Kong, Q.; Pan, B.; Qiu, X. Q.; Yang, D. J.; Lou, H. M. Fuel 2010, 89, 716. doi: 10.1016/j.fuel.2009.09.015

    7. [7]

      (7) Li, Z. L.; Pang, Y. X.; Ge, Y. Y.; Qiu, X. Q. J. Phys. Chem. C 2011, 115, 24865. doi: 10.1021/jp2083117

    8. [8]

      (8) Ouyang, X. P.; Qiu, X. Q.; Lou, H. M.; Yang, D. Ind. Eng. Chem. Res. 2006, 45, 5716. doi: 10.1021/ie0513189

    9. [9]

      (9) Lin, X. L.; Zhou, M. S.; Wang, S. Y.; Lou, H. M.; Yang, D. J.; Qiu, X. Q. ACS. Sustain. Chem. Eng. 2014, 7, 1902.

    10. [10]

      (10) Qiu, X. Q.; Li, H.; Deng, Y. H.; Yian, Y.; Yi, C. H. Acta Polym. Sin. 2014, No. 11, 1458. [邱学青, 李浩, 邓永红, 钱勇, 易聪华. 高分子学报, 2014, No. 11, 1458.]

    11. [11]

      (11) Nieminen, K.; Kuitunen, S.; Paananen, M.; Sixta, H. Ind. Eng. Chem. Res. 2014, 53, 2614. doi: 10.1021/ie4028928

    12. [12]

      (12) Zhu, W.; Westman, G.; Theliander, H. Holzforschung 2014, 69, 143. doi: 10.1515/hf-2014-0062.

    13. [13]

      (13) Wallberg, O.; Jönsson, A. Chem. Eng. Res. Des. 2003, 81, 1379. doi: 10.1205/026387603771339591

    14. [14]

      (14) Azadi, P.; Inderwildi, O. R.; Farnood, R.; King, D. A. Renew Sust Energ. Rev. 2013, 21, 506. doi: 10.1016/j.rser.2012.12.022

    15. [15]

      (15) Liu, L. T.; Zhang, B.; Li, J.; Ma, D.; Kou, Y. Acta Phys. -Chim. Sin. 2012, 28, 2343. [刘凌涛, 张斌, 李晶, 马丁, 寇元. 物理化学学报, 2012, 28, 2343.] doi: 10.3866/PKU.WHXB201206152

    16. [16]

      (16) Yu, W. F.; Meng, X. G.; Liu, Y.; Li, X. H. Acta Phys. -Chim. Sin. 2013, 29, 2041. [于卫峰, 孟祥光, 刘莹, 李小红. 物理化学学报. 2013, 29, 2041.] doi: 10.3866/PKU.WHXB201306282

    17. [17]

      (17) Ringena, O.; Lebioda, S.; Lehnen, R.; Saake, B. J. Chromatogr. A 2006, 1102, 154. doi: 10.1016/j.chroma.2005.10.037

    18. [18]

      (18) Wisniewska, M.; Chibowski, S.; Urban, T. Colloid Interface Sci. 2009, 334, 146. doi: 10.1016/j.jcis.2009.03.006

    19. [19]

      (19) Ariga, K.; Okahata, Y. Langmuir 1994, 10, 2272. doi: 10.1021/la00019a041

    20. [20]

      (20) Liu, G.; Zhang, G. J. Phys. Chem. B 2004, 109, 743.

    21. [21]

      (21) Nestler, P.; Block, S.; Helm, C. A. J. Phys. Chem. B 2012, 116, 1234. doi: 10.1021/jp208837m

    22. [22]

      (22) Petridis, L.; Schulz, R.; Smith, J. C. J. Am. Chem. Soc. 2011, 133, 20277. doi: 10.1021/ja206839u

    23. [23]

      (23) Li, H.; Deng, Y. H.; Qiu, X. Q. Acta Phys. -Chim. Sin. 2015, 31, 128. [李浩, 邓永红, 邱学青. 物理化学学报, 2015, 31, 128.] doi: 10.3866/PKU.WHXB201411062

    24. [24]

      (24) Vu, T.; Chaffee, A.; Yarovsky, I. Mol. Simulat. 2002, 28, 981. doi: 10.1080/089270204000002610

    25. [25]

      (25) Norgren, M.; Bergfors, E. Wood Sci. Technol. 2005, 39, 512. doi: 10.1007/s00226-005-0008-y

    26. [26]

      (26) Satyanarayana, S. V.; Bhattacharya, P. K.; De, S. Sep. Purif. Technol. 2000, 20, 155. doi: 10.1016/S1383-5866(00)00086-1

    27. [27]

      (27) Chauhan, S.; Chauhan, M. S.; Sharma, P.; Rana, D. S. J. Mol. Liq. 2013, 187, 1. doi: 10.1016/j.molliq.2013.06.001

    28. [28]

      (28) Zhao, L.; Yan, Y.; Huang, J. B. Acta Phys. -Chim. Sin. 2010, 26, 840. [赵莉, 阎云, 黄建滨. 物理化学学报, 2010, 26, 840.] doi: 10.3866/PKU.WHXB20100429

    29. [29]

      (29) Qiu, X. Q.; Li, H.; Deng, Y. H.; Ouyang, X. P. Acta Polym. Sin. 2014, No. 9, 1281. [邱学青, 李浩, 邓永红, 欧阳新平. 高分子学报, 2014, No. 9, 1281.]

    30. [30]

      (30) Deng, Y. H.; Feng, X. J.; Zhou, M. S.; Qian, Y.; Yu, H. F.; Qiu, X. Q. Biomacromolecules 2011, 12, 116.


  • 加载中
    1. [1]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    2. [2]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    3. [3]

      Bing Sun . Practice of Ideological and Political Education in Physical Chemistry Courses for Non-Chemistry Majors. University Chemistry, 2024, 39(8): 28-35. doi: 10.3866/PKU.DXHX202311080

    4. [4]

      Tongqi Ye Qi Wang Yuewen Ye Yanqing Wang Hongyang Zhou Xianghua Kong . Reflection on the Reform of Physical Chemistry Teaching under the Background of “Intelligent Chemical Engineering”. University Chemistry, 2024, 39(3): 167-173. doi: 10.3866/PKU.DXHX202308116

    5. [5]

      Hongmei Zhao Ziqiang Lu Song Li Xingyu Li Chengting Zi Xingli Fan Xiangdong Qin . Exploration and Practice of Physical Chemistry Teaching under the Guidance of Course Ideological and Political Education. University Chemistry, 2024, 39(3): 210-217. doi: 10.3866/PKU.DXHX202309006

    6. [6]

      Youjun Fan Dandan Cai Wei Chen Jianhua Qiu . Exploration and Practice of Ideological and Political Education Reform in Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 119-124. doi: 10.3866/PKU.DXHX202310123

    7. [7]

      Jianmin Hao Ruifeng Wu Ying Wang Yijia Bai Xuechuan Gao Yuying Du . Reform and Practice of Physical Chemistry Course Based on Enhanced Process Assessment and Evaluation. University Chemistry, 2024, 39(8): 78-83. doi: 10.3866/PKU.DXHX202311103

    8. [8]

      Xu Liu Chengfang Liu Jie Huang Xiangchun Li Wenyong Lai . Research on the Application of Diversified Teaching Models in the Teaching of Physical Chemistry. University Chemistry, 2024, 39(8): 112-118. doi: 10.3866/PKU.DXHX202402021

    9. [9]

      Ruming Yuan Laiying Zhang Xiaoming Xu Pingping Wu Gang Fu . Application of Mathematica in Visualizing Physical Chemistry Formulas. University Chemistry, 2024, 39(8): 375-382. doi: 10.3866/PKU.DXHX202401030

    10. [10]

      Congyi Wu . Advice for Young Teachers to Promote Teaching Level of Physical Chemistry. University Chemistry, 2024, 39(11): 15-19. doi: 10.3866/PKU.DXHX202402054

    11. [11]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    12. [12]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    13. [13]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    14. [14]

      Yangwu Fu Chuanbo Hu Shuhong Chen . Teaching Reform and Practice of Physical Chemistry in Local Universities under the Background of Emerging Engineering Education. University Chemistry, 2025, 40(3): 237-244. doi: 10.12461/PKU.DXHX202406040

    15. [15]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    16. [16]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    17. [17]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    18. [18]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    19. [19]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    20. [20]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

Metrics
  • PDF Downloads(353)
  • Abstract views(994)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return