Citation:
LI Hui-Xue, ZUO Guo-Fang, LI Zhi-Feng, WANG Xiao-Feng, ZHENG Ren-Hui. Theoretical Study of Hemicyanine Dye as a Dye-Sensitized Solar Cell Light-Absorbing Material[J]. Acta Physico-Chimica Sinica,
;2015, 31(5): 866-876.
doi:
10.3866/PKU.WHXB201503254
-
We used first-principles calculations to investigate the photo-induced electron transfer (PIET) process of the hemicyanine-(TiO2)n complex ((TiO2)n-dye) for n=5, 9, 15. The geometries of the (TiO2)n-dye in the ground state were optimized using density functional theory (DFT) and their excited states were investigated using the time-dependent DFT (TDDFT) method. The excited energies, which were calculated using the longrange- corrected functionals, CAM-B3LYP and ωB97X-D, were in od agreement with the experimentally observed values. The wave functions based on DFT were used to calculate the charge transfer integrals by the generalized Mulliken-Hush (GMH) approach. In addition, the photo-induced charge separation rate constant (kCS) and charge recombination rate constant (kCR) were calculated using Marcus theory. The calculated results showed that there were a cascade of electron transfer channels from the dye into the (TiO2)n cluster, which increases the kCS value. In contrast, the single channel of charge recombination decreases the kCR value, which is negligible compared with kCS, indicating that electron recombination is not favored.
-
Keywords:
-
Theoretical study
, - Hemicyanine dye,
- (TiO2)n cluster,
- Electron transfer
-
-
-
-
[1]
(1) Grätzel, M. Accounts Chem. Res. 2009, 42, 1788. doi: 10.1021/ar900141y
-
[2]
(2) Gunes, S.; Neugebauer, H.; Sariciftci, N. Chem. Rev. 2007, 107, 1324. doi: 10.1021/cr050149z
-
[3]
(3) O'regan, B.; Grätzel, M. Nature 1991, 353, 737. doi: 10.1038/353737a0
-
[4]
(4) Akimov, A. V.; Neukirch, A. J.; Prezhdo, O. V. Chem. Rev. 2013, 113, 4496. doi: 10.1021/cr3004899
-
[5]
(5) Mori, S.; Nagata, M.; Nakahata, Y.; Yasuta, K.; to, R.; Kimura, M.; Taya, M. J. Am. Chem. Soc. 2010, 132, 4054. doi: 10.1021/ja9109677
-
[6]
(6) Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; akeru, B.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 16835. doi: 10.1021/ja052467l
-
[7]
(7) Wang, C. L.; Hu, J. Y.; Wu, C. H.; Kuo, H. H.; Chang, Y. C.; Lan, Z. J.; Wu, H. P.; Diau, E.W..; Lin, C. Y. Energ. Environ. Sci. 2014, 7 (4), 1392 doi: 10.1039/c3ee44168g
-
[8]
(8) Willig, F.; Eichberger, R.; Sundaresan, N. S.; Parkinson, B. A. J. Am. Chem. Soc. 1990, 112, 702.
-
[9]
(9) Grätzel, M. J. Photochem. Photobiol. A: Chem. 2004, 164, 3. doi: 10.1016/j.jphotochem.2004.02.023
-
[10]
(10) Yum, J. H.; Walter, P.; Huber, S.; Rentsch, D.; Geiger, T.; Nuesch, F.; De Angelis, F.; Grätzel, M.; Nazeeruddin, M. K. J. Am. Chem. Soc. 2007, 129, 10320. doi: 10.1021/ja0731470
-
[11]
(11) Wang, Z. S.; Cui, Y.; Hara, K.; Dan-Oh, Y.; Kasada, C.; Shinpo, A. Adv. Mater. 2007, 17, 138.
-
[12]
(12) Gao, S.W.; Lan, Z.; Wu, W. X.; Que, L. F.; Wu, J. H.; Lin, J. M.; Huang, M. L. Acta Phys. -Chim. Sin. 2014, 30, 446. [高素雯, 兰章, 吴晚霞, 阙兰芳, 吴季怀, 林建明, 黄妙良. 物理化学学报, 2014, 30, 446.] doi: 10.3866/PKU.WHXB201401022
-
[13]
(13) Feldt, S. M.; Lohse, P.W.; Kessler, F.; Nazeeruddin, M. K.; Grätzel, M.; Boschloo, G.; Hagfeldt, A. Phys. Chem. Chem. Phys. 2013, 15, 7087. doi: 10.1039/c3cp50997d
-
[14]
(14) Ito, S.; Zakeeruddin, S. M.; Humphry-Baker, R.; Liska, P.; Charvet, R.; Comte, P.; azeeruddin, M. K.; Pechy, P.; Takata, M.; Miura, H.; Uchida, S.; Grätzel, M. Adv. Mater. 2006, 18, 1202.
-
[15]
(15) Chen, Y. S.; Li, C.; Zeng, Z. H.; Wang, W. B.; Wang, X. S.; Zhang, B.W. J. Mater. Chem. 2005, 15, 1654.
-
[16]
(16) Wang, Z. S.; Li, F. Y.; Huang, C. H.; Wang, L.; Wei, M.; Jin, L. P.; Li, N. Q. J. Phys. Chem.B 2000, 104, 9676. doi: 10.1021/jp001580p
-
[17]
(17) Yao, Q. H.; Meng, F. S.; Li, F. Y.; Tian, H.; Huang, C. H. J. Mater. Chem. 2003, 13, 1048. doi: 10.1039/b300083b
-
[18]
(18) Preat, J.; Michaux, C.; Jacquemin, D.; Perpete, E. A. J. Phys. Chem. C 2009, 113, 16821. doi: 10.1021/jp904946a
-
[19]
(19) Wang, Z. S.; Li, F. Y.; Huang, C. H. J. Phys. Chem. B 2001, 105, 9210. doi: 10.1021/jp010667n
-
[20]
(20) De Angelis, F.; Fantacci, S.; Selloni, A.; Nazeeruddin, M. K.; Grätzel, M. J. Am. Chem. Soc. 2007, 129 (46), 14156. doi: 10.1021/ja076293e
-
[21]
(21) Song, J.; Yin, Z.; Yang, Z.; Amaladass, P.; Wu, S.; Ye, J.; Zhao, Y.; Deng, W. Q.; Zhang, H.; Liu, X.W. Chem. -Eur. J. 2011, 17(39), 10832. doi: 10.1002/chem.v17.39
-
[22]
(22) Al-Sehemi, A. G.; Irfan, A.; Asiri, A. M. Theor. Chem. Acc. 2012, 131, 1199. doi: 10.1007/s00214-012-1199-6
-
[23]
(23) Cave, R. J.; Newton, M. D. Chem. Phys. Lett. 1996, 249, 15. doi: 10.1016/0009-2614(95)01310-5
-
[24]
(24) Nan, G. J.; Wang, L. J.; Yang, X. D.; Shuai, Z. G.; Zhao, Y. J. Chem. Phys. 2009, 130, 024704. doi: 10.1063/1.3055519
-
[25]
(25) Shao, Y.; Molnar, L. F.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.; Brown, S. T.; Gilbert, A. T.; Slipchenko, L. V.; Levchenko, S. V.; O'Neill, D. P.; DiStasio, R. A., Jr.; Lochan, R. C.; Wang, T.; Beran, G. J.; Besley, N. A.; Herbert, J. M.; Lin, C. Y.; Voorhis, T. V.; Chien, S. H.; Sodt, A.; Steele, R. P.; Rassolov, V. A.; Maslen, P. E.; Korambath, P. P.; Adamson, R. D.; Austin, B.; Baker, J.; Byrd, E. C.; Dachsel, H.; Doerksen, R. J. Phys. Chem. Chem. Phys. 2006, 8, 3172. doi: 10.1039/b517914a
-
[26]
(26) Perdew, J. P.; Ruzsinszky, A.; Tao, J. M.; Staroverov, V. N. Scuseria, G. E.; Csonka, G. I. J. Chem. Phys. 2005, 123, 062201. doi: 10.1063/1.1904565
-
[27]
(27) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.02; Gaussian Inc.:Wallingford, CT, 2009.
-
[28]
(28) Zhou, X.; Zhang, H. X.; Pan, Q. J.; Xia, B. H.; Tang, A. J. Phys. Chem. A 2005, 109, 8809. doi: 10.1021/jp0503359
-
[29]
(29) Dreuw, A.; Head- rdon, M. J. Am. Chem. Soc. 2004, 126, 4007. doi: 10.1021/ja039556n
-
[30]
(30) Jacquemin, D.; Perpète, E. A.; Scuseria, G. E.; Ciofini, I.; Adamo, C. J. Chem. Theory Comput. 2008, 4, 123. doi: 10.1021/ct700187z
-
[31]
(31) Vydrov, O. A.; Heyd, J.; Krukau, A. V.; Scuseria, G. E. J. Chem. Phys. 2006, 125, 234109. doi: 10.1063/1.2409292
-
[32]
(32) Miertus, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55, 117. doi: 10.1016/0301-0104(81)85090-2
-
[33]
(33) Guo, Z. Y.; Liang, W. Z.; Zhao, Y.; Chen, G. H. J. Phys. Chem. C 2008, 112, 16655. doi: 10.1021/jp802007h
-
[34]
(34) Ramakrishna, S.; Willig, F. J. Phys. Chem. B 2000, 104, 68. doi: 10.1021/jp991428r
-
[35]
(35) Snaith, H. J.; Schmidt-Mende, L. Adv. Mater. 2007, 19, 3187. doi: 10.1002/adma.200602903
-
[36]
(36) Lundqvist, M. J.; Nilsing, M.; Persson, P.; Lunell, S. Int. J. Quantum Chem. 2006, 106, 3214.
-
[37]
(37) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284. doi: 10.1063/1.448800
-
[38]
(38) Kormann, C.; Bahnemann, D.W.; Hoffmann, M. R. J. Phys. Chem. 1988, 92, 5196. doi: 10.1021/j100329a027
-
[39]
(39) Zhao, Z. Y.; Liu, Q. J.; Zhang, J.; Zhu, Z. Q. Acta Phys. Sin. 2007, 56, 6592.
-
[40]
(40) Tian, H. N.; Yang, X. C.; Chen, R.; Zhang, R.; Hagfeldt, A.; Sun, L. J. Phys. Chem. C 2008, 112, 11023. doi: 10.1021/jp800953s
-
[41]
(41) Dreuw, A.; Head- rdon, M. Chem. Rev. 2005, 105, 4009. doi: 10.1021/cr0505627
-
[42]
(42) Voityuk, A. A.; Rösch, N. J. Chem. Phys. 2002, 117, 5607. doi: 10.1063/1.1502255
-
[43]
(43) Mirkin, C. A.; Ratner, M. A. Annu. Rev. Phys. Chem. 1992, 43, 719. doi: 10.1146/annurev.pc.43.100192.003443
-
[44]
(44) Newton, M. D. Chem. Rev. 1991, 91, 767. doi: 10.1021/cr00005a007
-
[45]
(45) Levine, I. N. Quantum Chemistry, 5th ed.; Prentice Hall: New York, 1991.
-
[1]
-
-
-
[1]
Yanglin Jiang , Mingqing Chen , Min Liang , Yige Yao , Yan Zhang , Peng Wang , Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027
-
[2]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[3]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[4]
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
-
[5]
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
-
[6]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[7]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[8]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[9]
Jingwen Wang , Minghao Wu , Xing Zuo , Yaofeng Yuan , Yahao Wang , Xiaoshun Zhou , Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023
-
[10]
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
-
[11]
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602
-
[12]
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036
-
[13]
Xiangchun Li , Wei Xue , Xu Liu , Wenyong Lai . Research and Practice on the Cultivation of Innovation Ability of Chemistry Graduate Students in Electronic Information Universities: A Case Study of Nanjing University of Posts and Telecommunications. University Chemistry, 2024, 39(6): 55-62. doi: 10.3866/PKU.DXHX202310018
-
[14]
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
-
[15]
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
-
[16]
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
-
[17]
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
-
[18]
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
-
[19]
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
-
[20]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
-
[1]
Metrics
- PDF Downloads(270)
- Abstract views(509)
- HTML views(7)