Citation: LI Hui-Xue, ZUO Guo-Fang, LI Zhi-Feng, WANG Xiao-Feng, ZHENG Ren-Hui. Theoretical Study of Hemicyanine Dye as a Dye-Sensitized Solar Cell Light-Absorbing Material[J]. Acta Physico-Chimica Sinica, ;2015, 31(5): 866-876. doi: 10.3866/PKU.WHXB201503254
-
We used first-principles calculations to investigate the photo-induced electron transfer (PIET) process of the hemicyanine-(TiO2)n complex ((TiO2)n-dye) for n=5, 9, 15. The geometries of the (TiO2)n-dye in the ground state were optimized using density functional theory (DFT) and their excited states were investigated using the time-dependent DFT (TDDFT) method. The excited energies, which were calculated using the longrange- corrected functionals, CAM-B3LYP and ωB97X-D, were in od agreement with the experimentally observed values. The wave functions based on DFT were used to calculate the charge transfer integrals by the generalized Mulliken-Hush (GMH) approach. In addition, the photo-induced charge separation rate constant (kCS) and charge recombination rate constant (kCR) were calculated using Marcus theory. The calculated results showed that there were a cascade of electron transfer channels from the dye into the (TiO2)n cluster, which increases the kCS value. In contrast, the single channel of charge recombination decreases the kCR value, which is negligible compared with kCS, indicating that electron recombination is not favored.
-
Keywords:
-
Theoretical study
, - Hemicyanine dye,
- (TiO2)n cluster,
- Electron transfer
-
-
-
[1]
(1) Grätzel, M. Accounts Chem. Res. 2009, 42, 1788. doi: 10.1021/ar900141y
-
[2]
(2) Gunes, S.; Neugebauer, H.; Sariciftci, N. Chem. Rev. 2007, 107, 1324. doi: 10.1021/cr050149z
-
[3]
(3) O'regan, B.; Grätzel, M. Nature 1991, 353, 737. doi: 10.1038/353737a0
-
[4]
(4) Akimov, A. V.; Neukirch, A. J.; Prezhdo, O. V. Chem. Rev. 2013, 113, 4496. doi: 10.1021/cr3004899
-
[5]
(5) Mori, S.; Nagata, M.; Nakahata, Y.; Yasuta, K.; to, R.; Kimura, M.; Taya, M. J. Am. Chem. Soc. 2010, 132, 4054. doi: 10.1021/ja9109677
-
[6]
(6) Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; akeru, B.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 16835. doi: 10.1021/ja052467l
-
[7]
(7) Wang, C. L.; Hu, J. Y.; Wu, C. H.; Kuo, H. H.; Chang, Y. C.; Lan, Z. J.; Wu, H. P.; Diau, E.W..; Lin, C. Y. Energ. Environ. Sci. 2014, 7 (4), 1392 doi: 10.1039/c3ee44168g
-
[8]
(8) Willig, F.; Eichberger, R.; Sundaresan, N. S.; Parkinson, B. A. J. Am. Chem. Soc. 1990, 112, 702.
-
[9]
(9) Grätzel, M. J. Photochem. Photobiol. A: Chem. 2004, 164, 3. doi: 10.1016/j.jphotochem.2004.02.023
-
[10]
(10) Yum, J. H.; Walter, P.; Huber, S.; Rentsch, D.; Geiger, T.; Nuesch, F.; De Angelis, F.; Grätzel, M.; Nazeeruddin, M. K. J. Am. Chem. Soc. 2007, 129, 10320. doi: 10.1021/ja0731470
-
[11]
(11) Wang, Z. S.; Cui, Y.; Hara, K.; Dan-Oh, Y.; Kasada, C.; Shinpo, A. Adv. Mater. 2007, 17, 138.
-
[12]
(12) Gao, S.W.; Lan, Z.; Wu, W. X.; Que, L. F.; Wu, J. H.; Lin, J. M.; Huang, M. L. Acta Phys. -Chim. Sin. 2014, 30, 446. [高素雯, 兰章, 吴晚霞, 阙兰芳, 吴季怀, 林建明, 黄妙良. 物理化学学报, 2014, 30, 446.] doi: 10.3866/PKU.WHXB201401022
-
[13]
(13) Feldt, S. M.; Lohse, P.W.; Kessler, F.; Nazeeruddin, M. K.; Grätzel, M.; Boschloo, G.; Hagfeldt, A. Phys. Chem. Chem. Phys. 2013, 15, 7087. doi: 10.1039/c3cp50997d
-
[14]
(14) Ito, S.; Zakeeruddin, S. M.; Humphry-Baker, R.; Liska, P.; Charvet, R.; Comte, P.; azeeruddin, M. K.; Pechy, P.; Takata, M.; Miura, H.; Uchida, S.; Grätzel, M. Adv. Mater. 2006, 18, 1202.
-
[15]
(15) Chen, Y. S.; Li, C.; Zeng, Z. H.; Wang, W. B.; Wang, X. S.; Zhang, B.W. J. Mater. Chem. 2005, 15, 1654.
-
[16]
(16) Wang, Z. S.; Li, F. Y.; Huang, C. H.; Wang, L.; Wei, M.; Jin, L. P.; Li, N. Q. J. Phys. Chem.B 2000, 104, 9676. doi: 10.1021/jp001580p
-
[17]
(17) Yao, Q. H.; Meng, F. S.; Li, F. Y.; Tian, H.; Huang, C. H. J. Mater. Chem. 2003, 13, 1048. doi: 10.1039/b300083b
-
[18]
(18) Preat, J.; Michaux, C.; Jacquemin, D.; Perpete, E. A. J. Phys. Chem. C 2009, 113, 16821. doi: 10.1021/jp904946a
-
[19]
(19) Wang, Z. S.; Li, F. Y.; Huang, C. H. J. Phys. Chem. B 2001, 105, 9210. doi: 10.1021/jp010667n
-
[20]
(20) De Angelis, F.; Fantacci, S.; Selloni, A.; Nazeeruddin, M. K.; Grätzel, M. J. Am. Chem. Soc. 2007, 129 (46), 14156. doi: 10.1021/ja076293e
-
[21]
(21) Song, J.; Yin, Z.; Yang, Z.; Amaladass, P.; Wu, S.; Ye, J.; Zhao, Y.; Deng, W. Q.; Zhang, H.; Liu, X.W. Chem. -Eur. J. 2011, 17(39), 10832. doi: 10.1002/chem.v17.39
-
[22]
(22) Al-Sehemi, A. G.; Irfan, A.; Asiri, A. M. Theor. Chem. Acc. 2012, 131, 1199. doi: 10.1007/s00214-012-1199-6
-
[23]
(23) Cave, R. J.; Newton, M. D. Chem. Phys. Lett. 1996, 249, 15. doi: 10.1016/0009-2614(95)01310-5
-
[24]
(24) Nan, G. J.; Wang, L. J.; Yang, X. D.; Shuai, Z. G.; Zhao, Y. J. Chem. Phys. 2009, 130, 024704. doi: 10.1063/1.3055519
-
[25]
(25) Shao, Y.; Molnar, L. F.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.; Brown, S. T.; Gilbert, A. T.; Slipchenko, L. V.; Levchenko, S. V.; O'Neill, D. P.; DiStasio, R. A., Jr.; Lochan, R. C.; Wang, T.; Beran, G. J.; Besley, N. A.; Herbert, J. M.; Lin, C. Y.; Voorhis, T. V.; Chien, S. H.; Sodt, A.; Steele, R. P.; Rassolov, V. A.; Maslen, P. E.; Korambath, P. P.; Adamson, R. D.; Austin, B.; Baker, J.; Byrd, E. C.; Dachsel, H.; Doerksen, R. J. Phys. Chem. Chem. Phys. 2006, 8, 3172. doi: 10.1039/b517914a
-
[26]
(26) Perdew, J. P.; Ruzsinszky, A.; Tao, J. M.; Staroverov, V. N. Scuseria, G. E.; Csonka, G. I. J. Chem. Phys. 2005, 123, 062201. doi: 10.1063/1.1904565
-
[27]
(27) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.02; Gaussian Inc.:Wallingford, CT, 2009.
-
[28]
(28) Zhou, X.; Zhang, H. X.; Pan, Q. J.; Xia, B. H.; Tang, A. J. Phys. Chem. A 2005, 109, 8809. doi: 10.1021/jp0503359
-
[29]
(29) Dreuw, A.; Head- rdon, M. J. Am. Chem. Soc. 2004, 126, 4007. doi: 10.1021/ja039556n
-
[30]
(30) Jacquemin, D.; Perpète, E. A.; Scuseria, G. E.; Ciofini, I.; Adamo, C. J. Chem. Theory Comput. 2008, 4, 123. doi: 10.1021/ct700187z
-
[31]
(31) Vydrov, O. A.; Heyd, J.; Krukau, A. V.; Scuseria, G. E. J. Chem. Phys. 2006, 125, 234109. doi: 10.1063/1.2409292
-
[32]
(32) Miertus, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55, 117. doi: 10.1016/0301-0104(81)85090-2
-
[33]
(33) Guo, Z. Y.; Liang, W. Z.; Zhao, Y.; Chen, G. H. J. Phys. Chem. C 2008, 112, 16655. doi: 10.1021/jp802007h
-
[34]
(34) Ramakrishna, S.; Willig, F. J. Phys. Chem. B 2000, 104, 68. doi: 10.1021/jp991428r
-
[35]
(35) Snaith, H. J.; Schmidt-Mende, L. Adv. Mater. 2007, 19, 3187. doi: 10.1002/adma.200602903
-
[36]
(36) Lundqvist, M. J.; Nilsing, M.; Persson, P.; Lunell, S. Int. J. Quantum Chem. 2006, 106, 3214.
-
[37]
(37) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284. doi: 10.1063/1.448800
-
[38]
(38) Kormann, C.; Bahnemann, D.W.; Hoffmann, M. R. J. Phys. Chem. 1988, 92, 5196. doi: 10.1021/j100329a027
-
[39]
(39) Zhao, Z. Y.; Liu, Q. J.; Zhang, J.; Zhu, Z. Q. Acta Phys. Sin. 2007, 56, 6592.
-
[40]
(40) Tian, H. N.; Yang, X. C.; Chen, R.; Zhang, R.; Hagfeldt, A.; Sun, L. J. Phys. Chem. C 2008, 112, 11023. doi: 10.1021/jp800953s
-
[41]
(41) Dreuw, A.; Head- rdon, M. Chem. Rev. 2005, 105, 4009. doi: 10.1021/cr0505627
-
[42]
(42) Voityuk, A. A.; Rösch, N. J. Chem. Phys. 2002, 117, 5607. doi: 10.1063/1.1502255
-
[43]
(43) Mirkin, C. A.; Ratner, M. A. Annu. Rev. Phys. Chem. 1992, 43, 719. doi: 10.1146/annurev.pc.43.100192.003443
-
[44]
(44) Newton, M. D. Chem. Rev. 1991, 91, 767. doi: 10.1021/cr00005a007
-
[45]
(45) Levine, I. N. Quantum Chemistry, 5th ed.; Prentice Hall: New York, 1991.
-
[1]
-
-
[1]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[2]
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
-
[3]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[4]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[5]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[6]
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
-
[7]
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
-
[8]
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
-
[9]
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
-
[10]
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
-
[11]
Xiangchun Li , Wei Xue , Xu Liu , Wenyong Lai . Research and Practice on the Cultivation of Innovation Ability of Chemistry Graduate Students in Electronic Information Universities: A Case Study of Nanjing University of Posts and Telecommunications. University Chemistry, 2024, 39(6): 55-62. doi: 10.3866/PKU.DXHX202310018
-
[12]
Zongfei YANG , Xiaosen ZHAO , Jing LI , Wenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306
-
[13]
Yifen He , Chao Qu , Na Ren , Dawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262
-
[14]
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
-
[15]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[16]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[17]
Shuangxi Li , Huijun Yu , Tianwei Lan , Liyi Shi , Danhong Cheng , Lupeng Han , Dengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240
-
[18]
Ping Cai , Yaxian Zhu , Tao Hu . Frontier Research and Basic Theory in the Classroom: an Introduction to the Inorganic Chemistry Teaching Case under the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 84-88. doi: 10.12461/PKU.DXHX202408027
-
[19]
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
-
[20]
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
-
[1]
Metrics
- PDF Downloads(270)
- Abstract views(470)
- HTML views(5)