Citation: LI Hui-Xue, ZUO Guo-Fang, LI Zhi-Feng, WANG Xiao-Feng, ZHENG Ren-Hui. Theoretical Study of Hemicyanine Dye as a Dye-Sensitized Solar Cell Light-Absorbing Material[J]. Acta Physico-Chimica Sinica, ;2015, 31(5): 866-876. doi: 10.3866/PKU.WHXB201503254 shu

Theoretical Study of Hemicyanine Dye as a Dye-Sensitized Solar Cell Light-Absorbing Material

  • Received Date: 27 February 2015
    Available Online: 25 March 2015

    Fund Project: 国家自然科学基金(21465021, 21463023) (21465021, 21463023) 教育部重点项目(211189) (211189) 甘肃省自然科学基金(1208RJZE139) (1208RJZE139)甘肃省高校领军人才项目(11zx-04)资助 (11zx-04)

  • We used first-principles calculations to investigate the photo-induced electron transfer (PIET) process of the hemicyanine-(TiO2)n complex ((TiO2)n-dye) for n=5, 9, 15. The geometries of the (TiO2)n-dye in the ground state were optimized using density functional theory (DFT) and their excited states were investigated using the time-dependent DFT (TDDFT) method. The excited energies, which were calculated using the longrange- corrected functionals, CAM-B3LYP and ωB97X-D, were in od agreement with the experimentally observed values. The wave functions based on DFT were used to calculate the charge transfer integrals by the generalized Mulliken-Hush (GMH) approach. In addition, the photo-induced charge separation rate constant (kCS) and charge recombination rate constant (kCR) were calculated using Marcus theory. The calculated results showed that there were a cascade of electron transfer channels from the dye into the (TiO2)n cluster, which increases the kCS value. In contrast, the single channel of charge recombination decreases the kCR value, which is negligible compared with kCS, indicating that electron recombination is not favored.

  • 加载中
    1. [1]

      (1) Grätzel, M. Accounts Chem. Res. 2009, 42, 1788. doi: 10.1021/ar900141y

    2. [2]

      (2) Gunes, S.; Neugebauer, H.; Sariciftci, N. Chem. Rev. 2007, 107, 1324. doi: 10.1021/cr050149z

    3. [3]

      (3) O'regan, B.; Grätzel, M. Nature 1991, 353, 737. doi: 10.1038/353737a0

    4. [4]

      (4) Akimov, A. V.; Neukirch, A. J.; Prezhdo, O. V. Chem. Rev. 2013, 113, 4496. doi: 10.1021/cr3004899

    5. [5]

      (5) Mori, S.; Nagata, M.; Nakahata, Y.; Yasuta, K.; to, R.; Kimura, M.; Taya, M. J. Am. Chem. Soc. 2010, 132, 4054. doi: 10.1021/ja9109677

    6. [6]

      (6) Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; akeru, B.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 16835. doi: 10.1021/ja052467l

    7. [7]

      (7) Wang, C. L.; Hu, J. Y.; Wu, C. H.; Kuo, H. H.; Chang, Y. C.; Lan, Z. J.; Wu, H. P.; Diau, E.W..; Lin, C. Y. Energ. Environ. Sci. 2014, 7 (4), 1392 doi: 10.1039/c3ee44168g

    8. [8]

      (8) Willig, F.; Eichberger, R.; Sundaresan, N. S.; Parkinson, B. A. J. Am. Chem. Soc. 1990, 112, 702.

    9. [9]

      (9) Grätzel, M. J. Photochem. Photobiol. A: Chem. 2004, 164, 3. doi: 10.1016/j.jphotochem.2004.02.023

    10. [10]

      (10) Yum, J. H.; Walter, P.; Huber, S.; Rentsch, D.; Geiger, T.; Nuesch, F.; De Angelis, F.; Grätzel, M.; Nazeeruddin, M. K. J. Am. Chem. Soc. 2007, 129, 10320. doi: 10.1021/ja0731470

    11. [11]

      (11) Wang, Z. S.; Cui, Y.; Hara, K.; Dan-Oh, Y.; Kasada, C.; Shinpo, A. Adv. Mater. 2007, 17, 138.

    12. [12]

      (12) Gao, S.W.; Lan, Z.; Wu, W. X.; Que, L. F.; Wu, J. H.; Lin, J. M.; Huang, M. L. Acta Phys. -Chim. Sin. 2014, 30, 446. [高素雯, 兰章, 吴晚霞, 阙兰芳, 吴季怀, 林建明, 黄妙良. 物理化学学报, 2014, 30, 446.] doi: 10.3866/PKU.WHXB201401022

    13. [13]

      (13) Feldt, S. M.; Lohse, P.W.; Kessler, F.; Nazeeruddin, M. K.; Grätzel, M.; Boschloo, G.; Hagfeldt, A. Phys. Chem. Chem. Phys. 2013, 15, 7087. doi: 10.1039/c3cp50997d

    14. [14]

      (14) Ito, S.; Zakeeruddin, S. M.; Humphry-Baker, R.; Liska, P.; Charvet, R.; Comte, P.; azeeruddin, M. K.; Pechy, P.; Takata, M.; Miura, H.; Uchida, S.; Grätzel, M. Adv. Mater. 2006, 18, 1202.

    15. [15]

      (15) Chen, Y. S.; Li, C.; Zeng, Z. H.; Wang, W. B.; Wang, X. S.; Zhang, B.W. J. Mater. Chem. 2005, 15, 1654.

    16. [16]

      (16) Wang, Z. S.; Li, F. Y.; Huang, C. H.; Wang, L.; Wei, M.; Jin, L. P.; Li, N. Q. J. Phys. Chem.B 2000, 104, 9676. doi: 10.1021/jp001580p

    17. [17]

      (17) Yao, Q. H.; Meng, F. S.; Li, F. Y.; Tian, H.; Huang, C. H. J. Mater. Chem. 2003, 13, 1048. doi: 10.1039/b300083b

    18. [18]

      (18) Preat, J.; Michaux, C.; Jacquemin, D.; Perpete, E. A. J. Phys. Chem. C 2009, 113, 16821. doi: 10.1021/jp904946a

    19. [19]

      (19) Wang, Z. S.; Li, F. Y.; Huang, C. H. J. Phys. Chem. B 2001, 105, 9210. doi: 10.1021/jp010667n

    20. [20]

      (20) De Angelis, F.; Fantacci, S.; Selloni, A.; Nazeeruddin, M. K.; Grätzel, M. J. Am. Chem. Soc. 2007, 129 (46), 14156. doi: 10.1021/ja076293e

    21. [21]

      (21) Song, J.; Yin, Z.; Yang, Z.; Amaladass, P.; Wu, S.; Ye, J.; Zhao, Y.; Deng, W. Q.; Zhang, H.; Liu, X.W. Chem. -Eur. J. 2011, 17(39), 10832. doi: 10.1002/chem.v17.39

    22. [22]

      (22) Al-Sehemi, A. G.; Irfan, A.; Asiri, A. M. Theor. Chem. Acc. 2012, 131, 1199. doi: 10.1007/s00214-012-1199-6

    23. [23]

      (23) Cave, R. J.; Newton, M. D. Chem. Phys. Lett. 1996, 249, 15. doi: 10.1016/0009-2614(95)01310-5

    24. [24]

      (24) Nan, G. J.; Wang, L. J.; Yang, X. D.; Shuai, Z. G.; Zhao, Y. J. Chem. Phys. 2009, 130, 024704. doi: 10.1063/1.3055519

    25. [25]

      (25) Shao, Y.; Molnar, L. F.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.; Brown, S. T.; Gilbert, A. T.; Slipchenko, L. V.; Levchenko, S. V.; O'Neill, D. P.; DiStasio, R. A., Jr.; Lochan, R. C.; Wang, T.; Beran, G. J.; Besley, N. A.; Herbert, J. M.; Lin, C. Y.; Voorhis, T. V.; Chien, S. H.; Sodt, A.; Steele, R. P.; Rassolov, V. A.; Maslen, P. E.; Korambath, P. P.; Adamson, R. D.; Austin, B.; Baker, J.; Byrd, E. C.; Dachsel, H.; Doerksen, R. J. Phys. Chem. Chem. Phys. 2006, 8, 3172. doi: 10.1039/b517914a

    26. [26]

      (26) Perdew, J. P.; Ruzsinszky, A.; Tao, J. M.; Staroverov, V. N. Scuseria, G. E.; Csonka, G. I. J. Chem. Phys. 2005, 123, 062201. doi: 10.1063/1.1904565

    27. [27]

      (27) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.02; Gaussian Inc.:Wallingford, CT, 2009.

    28. [28]

      (28) Zhou, X.; Zhang, H. X.; Pan, Q. J.; Xia, B. H.; Tang, A. J. Phys. Chem. A 2005, 109, 8809. doi: 10.1021/jp0503359

    29. [29]

      (29) Dreuw, A.; Head- rdon, M. J. Am. Chem. Soc. 2004, 126, 4007. doi: 10.1021/ja039556n

    30. [30]

      (30) Jacquemin, D.; Perpète, E. A.; Scuseria, G. E.; Ciofini, I.; Adamo, C. J. Chem. Theory Comput. 2008, 4, 123. doi: 10.1021/ct700187z

    31. [31]

      (31) Vydrov, O. A.; Heyd, J.; Krukau, A. V.; Scuseria, G. E. J. Chem. Phys. 2006, 125, 234109. doi: 10.1063/1.2409292

    32. [32]

      (32) Miertus, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55, 117. doi: 10.1016/0301-0104(81)85090-2

    33. [33]

      (33) Guo, Z. Y.; Liang, W. Z.; Zhao, Y.; Chen, G. H. J. Phys. Chem. C 2008, 112, 16655. doi: 10.1021/jp802007h

    34. [34]

      (34) Ramakrishna, S.; Willig, F. J. Phys. Chem. B 2000, 104, 68. doi: 10.1021/jp991428r

    35. [35]

      (35) Snaith, H. J.; Schmidt-Mende, L. Adv. Mater. 2007, 19, 3187. doi: 10.1002/adma.200602903

    36. [36]

      (36) Lundqvist, M. J.; Nilsing, M.; Persson, P.; Lunell, S. Int. J. Quantum Chem. 2006, 106, 3214.

    37. [37]

      (37) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284. doi: 10.1063/1.448800

    38. [38]

      (38) Kormann, C.; Bahnemann, D.W.; Hoffmann, M. R. J. Phys. Chem. 1988, 92, 5196. doi: 10.1021/j100329a027

    39. [39]

      (39) Zhao, Z. Y.; Liu, Q. J.; Zhang, J.; Zhu, Z. Q. Acta Phys. Sin. 2007, 56, 6592.

    40. [40]

      (40) Tian, H. N.; Yang, X. C.; Chen, R.; Zhang, R.; Hagfeldt, A.; Sun, L. J. Phys. Chem. C 2008, 112, 11023. doi: 10.1021/jp800953s

    41. [41]

      (41) Dreuw, A.; Head- rdon, M. Chem. Rev. 2005, 105, 4009. doi: 10.1021/cr0505627

    42. [42]

      (42) Voityuk, A. A.; Rösch, N. J. Chem. Phys. 2002, 117, 5607. doi: 10.1063/1.1502255

    43. [43]

      (43) Mirkin, C. A.; Ratner, M. A. Annu. Rev. Phys. Chem. 1992, 43, 719. doi: 10.1146/annurev.pc.43.100192.003443

    44. [44]

      (44) Newton, M. D. Chem. Rev. 1991, 91, 767. doi: 10.1021/cr00005a007

    45. [45]

      (45) Levine, I. N. Quantum Chemistry, 5th ed.; Prentice Hall: New York, 1991.


  • 加载中
    1. [1]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    2. [2]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    3. [3]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    4. [4]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    5. [5]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    6. [6]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    7. [7]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    8. [8]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    9. [9]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    10. [10]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    11. [11]

      Xiangchun Li Wei Xue Xu Liu Wenyong Lai . Research and Practice on the Cultivation of Innovation Ability of Chemistry Graduate Students in Electronic Information Universities: A Case Study of Nanjing University of Posts and Telecommunications. University Chemistry, 2024, 39(6): 55-62. doi: 10.3866/PKU.DXHX202310018

    12. [12]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    13. [13]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    14. [14]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    15. [15]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    16. [16]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    17. [17]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    18. [18]

      Ping Cai Yaxian Zhu Tao Hu . Frontier Research and Basic Theory in the Classroom: an Introduction to the Inorganic Chemistry Teaching Case under the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 84-88. doi: 10.12461/PKU.DXHX202408027

    19. [19]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    20. [20]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

Metrics
  • PDF Downloads(270)
  • Abstract views(470)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return