Citation: KOU Yan-Lei, QU Sheng-Chun, LIU Kong, CHI Dan, LU Shu-Di, LI Yan-Pei, YUE Shi-Zhong. Development of Cd-Based Compound Nanocrystal-Organic Polymer Hybrid Solar Cells[J]. Acta Physico-Chimica Sinica, ;2015, 31(5): 807-816. doi: 10.3866/PKU.WHXB201503242 shu

Development of Cd-Based Compound Nanocrystal-Organic Polymer Hybrid Solar Cells

  • Received Date: 5 January 2015
    Available Online: 24 March 2015

    Fund Project: 国家自然科学基金重大项目(61204002) (61204002)国家重点基础研究发展规划项目(973) (2014CB643503)资助 (973) (2014CB643503)

  • Organic-inorganic hybrid solar cells, which combine the advantages of conjugated polymers and inorganic nanocrystals, have attracted a lot of attention and been extensively studied in recent years. Cd-based compound nanocrystals, which were the first inorganic acceptor materials used in hybrid solar cells, have many advantages, such as easy synthesis, controllability of the size and morphology, high charge-carrier mobility, and high stability. This article reviews the structure and working mechanism of organic-inorganic hybrid solar cells, and analyzes the three main factors that have important influences on the power conversion efficiency (PCE) of hybrid solar cells: the open circuit voltage (Voc), short circuit current density (Jsc), and fill factor (FF). We also summarize the recent progress of Cd-based compound nanocrystal-organic polymer hybrid solar cells from the viewpoints of improvement of the synthetic methods of Cd-based compound nanocrystals, modification of the interfacial contact of Cd-based compound nanocrystals and organic polymer, optimization of the solvent, and the proportions of nanocrystals and organic polymer. Finally, we suggest some strategies to increase solar cell performance and suggest the future research direction of Cd-based compound nanocrystal organic-inorganic hybrid solar cells.

  • 加载中
    1. [1]

      (1) Gevorgyan, A. S.; Medford, A. J.; Bundgaard, E.; et al. Sol. Energy Mater. Sol. Cells 2011, 95 (5), 1398. doi: 10.1016/j.solmat.2011.01.010

    2. [2]

      (2) Krebs, F. C.; Nielsen, T. D.; Fyenbo, J.; Wadstrøm, M.; Pedersen, M. S. Energy Environ. Sci. 2010, 3 (5), 512. doi: 10.1039/b918441d

    3. [3]

      (3) Tong, F.; Kim, K.; Martinez, D.; Thapa, R.; Ahyi, A.; Williams, J.; Kim, D. J.; Lee, S.; Lim, E.; Lee, K. K.; Park, M. Semicond. Sci. Technol. 2012, 27 (10), 105005.

    4. [4]

      (4) Liu, R. C. Materials 2014, 7 (4), 2747. doi: 10.3390/ma7042747

    5. [5]

      (5) Nguyen, B. P.; Kim, T.; Park, C. R. J. Nanomater. 2014, 2014, 243041.

    6. [6]

      (6) Zhang, H. J.; Hou, X. Process. Chem. 2012, 24 (11), 2106. [张会京, 侯信. 化学进展, 2012, 24 (11), 2106.]

    7. [7]

      (7) Saunders, B. R. J. Colloid Interface Sci. 2012, 369 (1), 1. doi: 10.1016/j.jcis.2011.12.016

    8. [8]

      (8) Xu, T. T.; Qiao, Q. Q. Energy Environ. Sci. 2011, 4 (8), 2700. doi: 10.1039/c0ee00632g

    9. [9]

      (9) Leng, M. Z.; Song, J. Y.; Liu, J. Q. Mater. Rev. 2013, 4 (27), 16. [冷明哲, 宋箭叶, 刘建强. 材料导报, 2013, 4 (27), 16.]

    10. [10]

      (10) Ishwara, T.; Bradley, D. D. C.; Nelson, J.; Ravirajan, P.; Vanseveren, I.; Cleij, T.; Vanderzande, D.; Lutsen, L.; Tierney, S.; Heeney, M.; McCulloch, I. Appl. Phys. Lett. 2008, 92 (5), 053308-1. doi: 10.1063/1.2840608

    11. [11]

      (11) Rand, B. P.; Genoe, J.; Heremans, P.; Poortmans, J. Prog. Photovolt: Res. Appl. 2007, 15 (8), 659.

    12. [12]

      (12) Greenham, N. C.; Peng, X. G.; Alivisatos, A. P. Phys. Rev. B 1996, 54 (24), 17628. doi: 10.1103/PhysRevB.54.17628

    13. [13]

      (13) Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295 (5564), 2425. doi: 10.1126/science.1069156

    14. [14]

      (14) Chang, J.; Waclawik, E. R. RSC Adv. 2014, 4 (45), 23505. doi: 10.1039/c4ra02684e

    15. [15]

      (15) Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115 (19), 8706. doi: 10.1021/ja00072a025

    16. [16]

      (16) Peng, Z. A.; Peng, X. G. J. Am. Chem. Soc. 2001, 123 (1), 183. doi: 10.1021/ja003633m

    17. [17]

      (17) Manna, L.; Scher, E. C.; Alivisatos, A. P. J. Am. Chem. Soc. 2000, 122 (51), 12700. doi: 10.1021/ja003055+

    18. [18]

      (18) Manna, L.; Wang, L.W.; Cin lani, R.; Alivisatos, A. P. J. Phys. Chem. B 2005, 109 (13), 6183. doi: 10.1021/jp0445573

    19. [19]

      (19) Yin, Y. D.; Alivisatos, A. P. Nature 2005, 437 (29), 664.

    20. [20]

      (20) Deng, Z. T.; Cao, L.; Tang, F. Q.; Zou, B. S. J. Phys. Chem. B 2005, 109 (35), 16671. doi: 10.1021/jp052484x

    21. [21]

      (21) Pang, Q.; Zhao, L. J.; Cai, Y.; Nguyen, D. P.; Regnault, N.; Wang, N.; Yang, S. H.; Ge, W. K.; Ferreira, R.; Bastard, G.; Wang, J. N. Chem. Mater. 2005, 17 (21), 5263. doi: 10.1021/cm050774k

    22. [22]

      (22) Zhao, H. L.; Shen, H. B.; Wang, H. Z.; Li, L. S. Acta Phys. -Chim. Sin. 2010, 26 (3), 691. [赵慧玲, 申怀彬, 王洪哲, 李林松. 物理化学学报, 2010, 26 (3), 691.] doi: 10.3866/PKU.WHXB20100315

    23. [23]

      (23) Zhang, W. J.; Jin, C.; Yang, Y. J.; Zhong, X. H. Inorg. Chem. 2012, 51 (1), 531. doi: 10.1021/ic201989w

    24. [24]

      (24) Zhang, W. J.; Zhang, H.; Feng, Y. Y.; Zhong, X. H. ACS Nano 2012, 6 (12), 11066.

    25. [25]

      (25) Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Eychmu, A.; Weller, H. Nano Lett. 2002, 2 (8), 803. doi: 10.1021/nl025662w

    26. [26]

      (26) Dorokhin, D.; Tomczak, N.; Han, M.; Reinhoudt, D. N.; Velders, A. H.; Vancso, G. J. ACS Nano 2009, 3 (3), 661. doi: 10.1021/nn8006515

    27. [27]

      (27) Navarro, D. A. G.; Watson, D. F.; Aga, D. S.; Banerjee, S. Environ. Sci. Technol. 2009, 43 (3), 677. doi: 10.1021/es8017623

    28. [28]

      (28) Qin, B.; Zhao, Z. Z.; Song, R.; Shanbhag, S.; Tang, Z. Y. Angew. Chem. Int. Edit. 2008, 47 (51), 9875. doi: 10.1002/anie.v47:51

    29. [29]

      (29) Ananthakumar, S.; Ramkumar, J.; Babu, S. M. Mat. Sci. Semicon. Proc. 2014, 22, 44. doi: 10.1016/j.mssp.2014.02.008

    30. [30]

      (30) Surana, K.; Singh, P. K.; Rhee, H.W.; Bhattacharya, B. J. Ind. Eng. Chem. 2014, 20 (6), 4188. doi: 10.1016/j.jiec.2014.01.019

    31. [31]

      (31) Hoppe, H.; Sariciftci, N. S. J. Mater. Chem. 2006, 16 (1), 45. doi: 10.1039/B510618B

    32. [32]

      (32) Pei, J.; Hao, Y. Z.; Sun, B.; Li, Y. P.; Fan, L. X.; Sun, S.; Wang, S. X. Acta Phys. -Chim. Sin. 2013, 30 (3), 397. [裴娟, 郝彦忠, 孙宝, 李英品, 范龙雪, 孙硕, 王尚鑫. 物理化学学报, 2013, 30 (3), 397.] doi: 10.3866/PKU.WHXB201211161

    33. [33]

      (33) Noone, K. M.; Subramaniyan, S.; Zhang, Q. F.; Cao, G. Z.; Jenekhe, S. A.; Ginger, D. S. J. Phys. Chem. C 2011, 115 (49), 24403. doi: 10.1021/jp207514v

    34. [34]

      (34) Martnez, F. E.; Albero, J.; Palomares, E. J. Phys. Chem. Lett. 2010, 1 (20), 3039. doi: 10.1021/jz101228z

    35. [35]

      (35) Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Chem. Rev. 2010, 110 (1), 389. doi: 10.1021/cr900137k

    36. [36]

      (36) Mehta, A.; Sharma, S. N.; Chawla, P.; Chand, S. Colloid Polym. Sci. 2013, 292 (2), 301.

    37. [37]

      (37) Olson, J. D.; Gray, G. P.; Carter, S. A. Sol. Energy Mater Sol. Cells 2009, 93 (4), 519. doi: 10.1016/j.solmat.2008.11.022

    38. [38]

      (38) Zhou, R. J.; Stalder, R.; Xie, D. P.; Cao, W. R.; Zheng, Y.; Yang, Y. X.; Plaisant, M.; Holloway, P. H.; Schanze, K. S.; Reynolds, J. R.; Xue, J. G. ACS Nano 2013, 7 (6), 4846. doi: 10.1021/nn305823w

    39. [39]

      (39) Moreels, I.; Justo, Y.; Geyter, B. D.; Haustraete, K.; Martins, J. C.; Hens, Z. ACS Nano 2011, 5 (3), 2004. doi: 10.1021/nn103050w

    40. [40]

      (40) Owen, J. S.; Park, J.; Trudeau, P. E.; Alivisatos, A. P. J. Am. Chem. Soc. 2008, 130 (37), 12279. doi: 10.1021/ja804414f

    41. [41]

      (41) Puzder, A.; Williamson, J. A.; Zaitseva, N.; Galli, G.; Manna, L.; Alivisatos, A. P. Nano Lett. 2004, 4 (12), 2361. doi: 10.1021/nl0485861

    42. [42]

      (42) Tang, J.; Kemp, K.W.; Hoogland, S.; Jeong, K. S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X. H.; Debnath, R.; Cha, D.; Chou, K.W.; Fischer, A.; Amassian, F.; Asbury, J. B.; Sargent, E. H. Nat. Mater. 2011, 10 (10), 765. doi: 10.1038/nmat3118

    43. [43]

      (43) Zhou, R. J.; Xue, J. G. ChemPhysChem 2012, 13 (10), 2471. doi: 10.1002/cphc.201101016

    44. [44]

      (44) Yang, J. H.; Tang, A.W.; Zhou, R. J.; Xue, J. G. Sol. Energy Mater. Sol. Cells 2011, 95 (2), 476. doi: 10.1016/j.solmat.2010.09.005

    45. [45]

      (45) Lee, J. S.; Kovalenko, M. V.; Huang, J.; Chung, S. D.; Talapin, D. V. Nat. Nanotechnol. 2011, 6 (6), 348. doi: 10.1038/nnano.2011.46

    46. [46]

      (46) Kovalenko, M. V.; Scheele, M.; Talapin, D. V. Science 2009, 324 (5933), 1417. doi: 10.1126/science.1170524

    47. [47]

      (47) Seo, J.W.; Kim, W. J.; Kim, S. J.; Lee, K. S.; Cartwright, A. N.; Prasad, P. N. Appl. Phys. Lett. 2009, 94 (13), 133302. doi: 10.1063/1.3110969

    48. [48]

      (48) Wu, Y.; Zhang, G. Q. Nano Lett. 2010, 10 (5), 1628. doi: 10.1021/nl904095n

    49. [49]

      (49) Kwon, S. C.; Moon, H. C.; Lim, K. G.; Bae, D.; Jang, S. S.; Shin, J. Y.; Park, J.; Lee, T.W.; Kim, J. K. J. Mater. Chem. A 2013, 1 (7), 2401. doi: 10.1039/c2ta01222g

    50. [50]

      (50) Lek, J. Y.; Xing, G. C.; Sum, T. C.; Lam, Y. M. ACS Appl. Mater. Interfaces 2014, 6 (2), 894. doi: 10.1021/am4041515

    51. [51]

      (51) Sun, B. Q.; Snaith, H. J.; Dhoot, A. S.; Westenhoff, S.; Greenham, N. C. J. Appl. Phys. 2005, 97 (1), 014914-1. doi: 10.1063/1.1804613

    52. [52]

      (52) Zhou, Y.; Li, Y. C.; Zhong, H. Z.; Hou, J. H.; Ding, Y. Q.; Yang, C. H.; Li, Y. F. ACS Sym. Ser. 2006, 17 (16), 4041.

    53. [53]

      (53) Dayal, S.; Kopidakis, N.; Olson, D. C.; Ginley, D. S.; Rumbles, G. Nano Lett. 2010, 10 (1), 239. doi: 10.1021/nl903406s

    54. [54]

      (54) Ren , S. Q.; Chang, L. Y.; Lim, S. K.; Zhao, J.; Smith, M.; Zhao, N.; Bulovi?, V.; Bawendi, M.; Grade?ak, S. Nano Lett. 2011, 11 (9), 3998. doi: 10.1021/nl202435t

    55. [55]

      (55) Chen, C. H.; Lai, C.W.; Wu, I. C.; Pan, H. R.; Chen, I. P.; Peng, Y. K.; Liu, C. L.; Chen, C. H.; Chou, P. T. Adv. Mater. 2011, 23 (45), 5451. doi: 10.1002/adma.201102775

    56. [56]

      (56) Leventis, H. C.; King, S. P.; Sudlow, A.; Hill, M. S.; Molloy, K. C.; Haque, S. A. Nano Lett. 2010, 10 (4), 1253. doi: 10.1021/nl903787j

    57. [57]

      (57) Zhou, Y. F.; Riehle, F. S.; Yuan, Y.; Schleiermacher, H. F.; Niggemann, M.; Urban, G. A.; Krüger, M. Appl. Phys. Lett. 2010, 96 (1), 013304-1. doi: 10.1063/1.3280370

    58. [58]

      (58) Zhou, Y. F.; Eck, M.; Veit, C.; Zimmermann, B.; Rauscher, F.; Niyamakom, P.; Yilmaz, S.; Dumsch, I.; Allard, S.; Scherf, U. Sol. Energy Mater. Sol. Cells 2011, 95 (4), 1232. doi: 10.1016/j. solmat.2010.12.041

    59. [59]

      (59) Radychev, N.; Lokteva, I.; Witt, F.; Kolny-Olesiak, J.; Borchert, H.; Parisi, J. J. Phys. Chem. C 2011, 115 (29), 14111. doi: 10.1021/jp2040604

    60. [60]

      (60) Yu, W. L.; Zhang, H.; Fan, Z. X.; Zhang, J. H.; Wei, H. T.; Zhou, D.; Xu, B.; Li, F. H.; Tian, W. G.; Yang, B. Energy Environ. Sci. 2011, 4 (8), 2831. doi: 10.1039/c1ee01485d

    61. [61]

      (61) Park, E. K.; Kim, J. H.; Ji, I. A.; Choi, H. M.; Kim, J. H.; Lim, K. T.; Bang, J. H.; Kim, Y. S. Microelectron Eng. 2014, 119, 169. doi: 10.1016/j.mee.2014.05.003

    62. [62]

      (62) Kang, Y.; Park, N. G.; Kim, D. Appl. Phys. Lett. 2005, 86 (11), 113101. doi: 10.1063/1.1883319

    63. [63]

      (63) Sun, B. Q.; Greenham, N. C. Phys. Chem. Chem. Phys. 2006, 8 (30), 3557. doi: 10.1039/b604734n

    64. [64]

      (64) Wang, L.; Liu, Y. S.; Jiang, X.; Qin, D. H.; Cao, Y. J. Phys. Chem. C 2007, 111 (26), 9538. doi: 10.1021/jp0715777

    65. [65]

      (65) Wu, Y.; Zhang, G. Q. Nano Lett. 2010, 10 (5), 1628. doi: 10.1021/nl904095n

    66. [66]

      (66) Lek, J. Y.; Xi, L. F.; Kardynal, B. E.; Wong, L. H.; Lam, Y. M. ACS Appl. Mater. Interfaces 2011, 3 (2), 287. doi: 10.1021/ am100938f

    67. [67]

      (67) Jeltsch, K. F.; Schädel, M.; Bonekamp, J. B.; Niyamakom, P.; Rauscher, F.; Lademann, H.W. A.; Dumsch, I.; Allard, S.; Scherf, U.; Meerholz, K. Adv. Funct. Mater. 2012, 22 (2), 397. doi: 10.1002/adfm.201101809

    68. [68]

      (68) Kuo, C. Y.; Su, M. S.; Chen, G. Y.; Ku, C. S.; Lee, H. Y.; Wei, K. H. Energy Environ. Sci. 2011, 4 (6), 2316. doi: 10.1039/ c1ee01283e

    69. [69]

      (69) Gur, I.; Fromer, N. A.; Chen, C. P.; Kanaras, A. G.; Alivisatos, A. P. Nano Lett. 2007, 7 (2), 409.


  • 加载中
    1. [1]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    2. [2]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    3. [3]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    4. [4]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    5. [5]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    6. [6]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    7. [7]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    8. [8]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    9. [9]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    10. [10]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    11. [11]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    12. [12]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    13. [13]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    14. [14]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    15. [15]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    16. [16]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    17. [17]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    18. [18]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    19. [19]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    20. [20]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

Metrics
  • PDF Downloads(464)
  • Abstract views(538)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return