Citation: LIU Hai-Wang, SHEN Xing-Hai, CHEN Qing-De. Extraction Mechanism and Selectivity of UO2(NO3)2 in Tributylphosphine Oxide-Ionic Liquid System[J]. Acta Physico-Chimica Sinica, ;2015, 31(5): 843-851. doi: 10.3866/PKU.WHXB201503202
-
The extraction of UO2(NO3)2 from aqueous solution was investigated using trioctylphosphine oxide (TOPO) and tributylphosphine oxide (TBPO) in ionic liquids (ILs) (CnmimNTf2, n=2, 4, 6, 8). A third phase was formed in the TOPO-C2mimNTf2 and TOPO-C4mimNTf2 extraction systems, whereas the extracted species of TBPO-CnmimNTf2 (n=2, 4, 6, 8) were well soluble in all ILs. The influence of the concentrations of the extractant, nitric acid, and salt on the extraction efficiency was also investigated. Adding HNO3 to the aqueous phase decreased the extraction efficiency. The effect of salt indicates the presence of a cation-exchange mechanism in the extraction. The addition of NO3 - in the aqueous phase increased the extraction efficiency of U, which indicates that NO3 - participates in the extraction. Selective extraction research indicates that TBPO-C4mimNTf2 exhibits od selectivity for U at low acid concentration despite the significant extraction efficiency on Zr at high acid concentration. After removing U, TBPO-C4mimNTf2 still showed high selectivity for Nd at low acid concentration. We also confirmed the difference of the extraction mechanisms among TBPO-CnmimNTf2 by quantitative measurement of NNO3 - in ILs, electrospray ionization mass spectroscopy (ESI- MS), and UV spectroscopy. There are two extraction species (UO2(TBPO)3(NO3)+ and UO2(TBPO)32+) and the proportion of UO2(TBPO)3(NO3)+ increases from C2mimNTf2 to C8mimNTf2.
-
-
[1]
(1) Bonhote, P.; Dias, A. P.; Papageorgiou, N.; Kalyanasundaram, K.; Grätzel, M. Inorg Chem. 1996, 35, 1168. doi: 10.1021/ic951325x
-
[2]
(2) Mekkii, S.; Wai, C. M.; Billard, I.; Moutiers, G.; Burt, J.; Yoon, B.; Wang, J. S.; Gaillard, C.; Ouadi, A.; Hesemann, P. Chem. Eur. J. 2006, 12, 1760.
-
[3]
(3) Rao, C. J.; Venkatesan, K. A.; Nagarajan, K.; Srinivasan, T. G.; Rao, P. R. V. Electrochim. Acta 2009, 54, 4718. doi: 10.1016/j.electacta.2009.03.074
-
[4]
(4) Rao, C. J.; Venkatesan, K. A.; Nagarajan, K.; Srinivasan, T. G.; Rao, P. R. V. Electrochim. Acta 2007, 53, 1911. doi: 10.1016/j.electacta.2007.08.043
-
[5]
(5) Wang, S. J.; Ao, Y. Y.; Zhou, H. Y.; Yuan, L. Y.; Peng, J.; Zhai, M. L. Acta Phys. -Chim. Sin. 2014, 30, 1597. [王硕珏, 敖银勇, 周瀚洋, 袁立永, 彭静, 翟茂林. 物理化学学报, 2014, 30, 1597.] doi: 10.3866/PKU.WHXB201406271
-
[6]
(6) Yuan, L. Y.; Xu, C.; Peng, J.; Xu, L.; Zhai, M. L.; Li, J. Q.; Wei, G. S.; Shen, X. H. Dalton Trans. 2009, 38, 7873.
-
[7]
(7) Xu, C.; Shen, X. H.; Chen, Q. D.; Gao, H. C. Sci. China-Chem. 2009, 52, 1858. doi: 10.1007/s11426-009-0268-8
-
[8]
(8) Xu, C.; Yuan, L. Y.; Shen, X. H.; Zhai, M. L. Dalton Trans. 2010, 39, 3897. doi: 10.1039/b925594j
-
[9]
(9) Sun, T. X.; Wang, Z. M.; Shen, X. H. Inorg. Chim. Acta 2012, 390, 8. doi: 10.1016/j.ica.2012.04.005
-
[10]
(10) Gao, S.; Sun, T.; Chen, Q.; Shen, X. J. Hazard. Mater. 2013, 263, 562. doi: 10.1016/j.jhazmat.2013.10.014
-
[11]
(11) Sun, T. X. Application of Ionic Liquids in the Extraction of Sr, Cs, U, and Tc. Ph.D. Dissertation, Peking University, Beijing, 2013. [孙涛祥. 离子液体体系萃取Sr, Cs, U 和Tc 等元素的研究[D]. 北京: 北京大学, 2013.]
-
[12]
(12) Sun, T. X.; Shen, X. H.; Chen, Q. D. Sci. China-Chem. 2013, 56, 782. doi: 10.1007/s11426-013-4859-z
-
[13]
(13) Sun, T. X.; Shen, X. H.; Chen, Q. D.; Ma, J. Y.; Zhang, S.; Huang, Y. Y. Radiat. Phys. Chem. 2013, 83, 74. doi: 10.1016/j.radphyschem.2012.10.004
-
[14]
(14) Wu, J. K.; Shen, X. H.; Chen, Q. D. Acta Phys. -Chim. Sin. 2013, 29, 1705. [吴京珂, 沈兴海, 陈庆德. 物理化学学报, 2013, 29, 1705.] doi: 10.3866/PKU.WHXB201306043
-
[15]
(15) Giridhar, P.; Venkatesan, K. A.; Srinivasan, T. G.; Rao, P. R. V. J. Radioanal. Nucl. Chem. 2005, 265, 31. doi: 10.1007/s10967-005-0785-7
-
[16]
(16) Giridhar, P.; Venkatesan, K. A.; Subramaniam, S.; Srinivasan, T. G.; Rao, P. R. V. J. Alloy. Compd. 2008, 448, 104. doi: 10.1016/j.jallcom.2007.03.115
-
[17]
(17) Dietz, M. L.; Stepinski, D. C. Talanta 2008, 75, 598. doi: 10.1016/j.talanta.2007.11.051
-
[18]
(18) Wang, J. S.; Sheaff, C. N.; Yoon, B.; Addleman, R. S.; Wai, C. M. Chem. Eur. J. 2009, 15, 4458. doi: 10.1002/chem.v15:17
-
[19]
(19) Visser, A. E.; Jensen, M. P.; Laszak, I.; Nash, K. L.; Choppin, G. R.; Rogers, R. D. Inorg. Chem. 2003, 42, 2197. doi: 10.1021/ic026302e
-
[20]
(20) Visser, A. E.; Rogers, R. D. J. Solid State Chem. 2003, 171, 109. doi: 10.1016/S0022-4596(02)00193-7
-
[21]
(21) Cocalia, V. A.; Jensen, M. P.; Holbrey, J. D.; Spear, S. K.; Stepinski, D. C.; Rogers, R. D. Dalton Trans. 2005, 1966.
-
[22]
(22) Shen, Y.; Tan, X.; Wang, L.; Wu, W. Sep. Purif. Technol. 2011, 78, 298. doi: 10.1016/j.seppur.2011.01.042
-
[23]
(23) Rout, A.; Venkatesan, K. A.; Srinivasan, T. G.; Rao, P. R. V. J. Hazard. Mater. 2012, 221, 62.
-
[24]
(24) Ouadi, A.; Klimchuk, O.; Gaillard, C.; Billard, I. Green Chem. 2007, 9, 1160. doi: 10.1039/b703642f
-
[25]
(25) Srncik, M.; Kogelnig, D.; Stojanovic, A.; Koerner, W.; Krachler, R.; Wallner, G. Appl. Radiat. Isot. 2009, 67, 2146. doi: 10.1016/j.apradiso.2009.04.011
-
[26]
(26) Bell, T. J.; Ikeda, Y. Dalton Trans. 2011, 40, 10125. doi: 10.1039/c1dt10755k
-
[27]
(27) Billard, I.; Ouadi, A.; Jobin, E.; Champion, J.; Gaillard, C.; Georg, S. Solvent Extr. Ion Exch. 2011, 29, 577. doi: 10.1080/07366299.2011.566494
-
[28]
(28) Pribylova, G. A. J. Radioanal. Nucl. Chem. 2011, 288, 693. doi: 10.1007/s10967-011-1014-1
-
[29]
(29) Bonnaffe-Moity, M.; Ouadi, A.; Mazan, V.; Miroshnichenko, S.; Ternova, D.; Georg, S.; Sypula, M.; Gaillard, C.; Billard, I. Dalton Trans. 2012, 41, 7526. doi: 10.1039/c2dt12421a
-
[30]
(30) Panja, S.; Mohapatra, P. K.; Tripathi, S. C.; Gandhi, P. M.; Janardan, P. Sep. Purif. Technol. 2012, 96, 289. doi: 10.1016/j.seppur.2012.06.015
-
[31]
(31) Sengupta, A.; Mohapatra, P. K.; Iqbal, M.; Huskens, J.; Verboom, W. Dalton Trans. 2012, 41, 6970. doi: 10.1039/c2dt12364a
-
[32]
(32) Quinn, J. E.; Ogden, M. D.; Soldenhoff, K. Solvent Extr. Ion Exch. 2013, 31, 538. doi: 10.1080/07366299.2013.775891
-
[33]
(33) Wei, M.; Feng, X. G.; Chen, J. Sep. Sci. Technol. 2013, 48, 741. doi: 10.1080/01496395.2012.707732
-
[1]
-
-
[1]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[2]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[3]
Lihui Jiang , Wanrong Dong , Hua Yang , Yongqing Xia , Hongjian Peng , Jun Yuan , Xiaoqian Hu , Zihan Zeng , Yingping Zou , Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056
-
[4]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[5]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[6]
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
-
[7]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[8]
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
-
[9]
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
-
[10]
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
-
[11]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[12]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[13]
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
-
[14]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[15]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[16]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[17]
Mei Yan , Rida Feng , Yerdos·Tohtarkhan , Biao Long , Li Zhou , Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103
-
[18]
Renxiao Liang , Zhe Zhong , Zhangling Jin , Lijuan Shi , Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024
-
[19]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
-
[20]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[1]
Metrics
- PDF Downloads(271)
- Abstract views(369)
- HTML views(2)