Citation: BAO Jin-Xiao, WANG Xiao-Xia, WU Tong-Wei, JIA Gui-Xiao, ZHANG Yong-Fan. Stability of Doped C50 and C70 Based on Curvature and Electronic Structures[J]. Acta Physico-Chimica Sinica, ;2015, 31(5): 899-904. doi: 10.3866/PKU.WHXB201503201 shu

Stability of Doped C50 and C70 Based on Curvature and Electronic Structures

  • Received Date: 24 November 2014
    Available Online: 20 March 2015

    Fund Project: 内蒙古科技大学材料与冶金学院青年人才孵化器基金(2014CY012) (2014CY012) 内蒙古自治区高等学校科学技术研究项目基金(NJZZ13128) (NJZZ13128)内蒙古自治区自然科学基金(2014BS0507)资助项目 (2014BS0507)

  • The doping energies and electronic structures of B, N, Si, P, and Co in C50 and C70 were investigated using the density functional theory (DFT)-B3LYP/6-31G* method, and the structural stabilities of doped fullerenes were investigated based on curvature theory and the electronic structures. The calculated results showed that the doping energies decreased with increasing curvature, and increased with increasing atomic radius of the doping species. Doping with B, N, P, and Co stabilized the C50 structure. However, doping with B and N was disadvantageous for the structural stability of C70. The doping reactivities were mainly determined by the curvature and related to the percentage of nonequivalent carbon atoms in the highest occupied molecular orbital (HOMO), and a large percentage was beneficial for the doping stability. In addition, whether the doped atoms accepted or lost electrons depended on their electronegativity. This work will be helpful for the stabilization of fullerene structures in experiment.

  • 加载中
    1. [1]

      (1) Kroto, H.W. Nature 1987, 329, 529. doi: 10.1038/329529a0

    2. [2]

      (2) Albertazzi, E.; Domene, C.; Fowler, P.W.; Heine, T.; Seifert, G.; Van Alsenoy, C.; Zerbetto, F. Phys. Chem. Chem. Phys. 1999, 12, 2913.

    3. [3]

      (3) Lu, X.; Chen, Z. F. Chem. Rev. 2005, 105, 3643. doi: 10.1021/cr030093d

    4. [4]

      (4) Li, J. Q.; Jia, G. X.; Zhang, Y. F. Chem. Eur. J. 2007, 13, 6430.

    5. [5]

      (5) Xie, S. Y.; Gao, F.; Lu, X.; Bin, R. B.; Wang, C. R.; Zhang, X.; Liu, M. L.; Deng, S. L.; Zheng, L. S. Science 2004, 304, 699. doi: 10.1126/science.1095567

    6. [6]

      (6) Hummelen, J. C.; Bellavia-Lund, C.; Wudl, F. Top. Curr. Chem. 1999, 199, 93. doi: 10.1007/3-540-68117-5

    7. [7]

      (7) Hirsch, A.; Brettreich, M. Heterofullerenes. Fullerenes, Chemistry and Reactions, 2nd ed.; Wiley-VCH:Weinheim, Germany, 2005; p 359.

    8. [8]

      (8) Hirsch, A.; Nuber, B. Accounts Chem. Res. 1999, 32, 795. doi: 10.1021/ar980113b

    9. [9]

      (9) Vostrowsky, O.; Hirsch, A. Chem. Rev. 2006, 106, 5191. doi: 10.1021/cr050561e

    10. [10]

      (10) Clemmer, D. E.; Hunter, J. M.; Shelimov, K. B.; Jarrold, M. F. Nature 1994, 372, 248. doi: 10.1038/372248a0

    11. [11]

      (11) Kong, Q.; Shen, Y.; Zhao, L.; Zhuang, J.; Qian, S.; Li, Y.; Lin, Y.; Cai, R. J. Chem. Phys. 2002, 116, 128.

    12. [12]

      (12) Ding, C. G.; Yang, J. L.; Han, R. S.; Wang, K. L. Phys. Rev. A 2001, 64, 043201.

    13. [13]

      (13) Viani, L.; Dos Santos, M. C. Solid State Commun. 2006, 138, 498. doi: 10.1016/j.ssc.2006.04.027

    14. [14]

      (14) Yang, Z. Y.; Xu, X. F.; Wang, G. C.; Shang, Z. F.; Cai, Z. S.; Pan, Y. M.; Zhao, X. Z. J. Mol. Struct.: Theochem 2002, 618, 191. doi: 10.1016/S0166-1280(02)00402-5

    15. [15]

      (15) Kurita, N.; Koboyyashi, K.; Kumabora, H.; Ta , K.; Ozawa, K. Chem. Phys. Lett. 1992, 198, 95. doi: 10.1016/0009-2614(92)90054-Q

    16. [16]

      (16) Wang, S. H.; Chen, F.; Fann, Y. C.; Kashani, M.; Malaty, M.; Jansen, S. A. J. Phys. Chem. 1995, 99, 6801. doi: 10.1021/j100018a008

    17. [17]

      (17) Ewels, C. P. Nano Lett. 2006, 6, 890. doi: 10.1021/nl051421n

    18. [18]

      (18) Zuo, T. M.; Xu, L. S.; Beavers, C. M.; Olmstead, M. M.; Fu, W. J.; Crawford, D.; Balch, A. L.; Dorn, H. C. J. Am. Chem. Soc. 2008, 130, 12992. doi: 10.1021/ja802417d

    19. [19]

      (19) Stevenson, S.; Ling, Y.; Coumbe, C. E.; Mackey, M. A.; Confait, B. S.; Phillips, J. P.; Dorn, H. C.; Zhang, Y. J. Am. Chem. Soc. 2009, 131, 17780. doi: 10.1021/ja908370t

    20. [20]

      (20) Breslavskaya, N. N.; Levin, A. A.; Buchachenko, A. L. Russ. Chem. Bull. 2004, 53, 18. doi: 10.1023/B:RUCB.0000024824.35542.0e

    21. [21]

      (21) Chen, Z.; Jiao, H.; Buhl, M.; Hirsch, A.; Thiel, W. Theor. Chem. Acc. 2001, 106, 352. doi: 10.1007/s002140100284

    22. [22]

      (22) Hauke, F.; Hirsch, A.; Liu, S. G.; Eche yen, L.; Swartz, A.; Luo, C.; Guldi, D. M. Chem. Phys. Chem. 2002, 3, 195.

    23. [23]

      (23) Vougioukalakis, G. C.; Orfanopoulos, M. J. Am. Chem. Soc. 2004, 126, 15956. doi: 10.1021/ja045495x

    24. [24]

      (24) Vougioukalakis, G. C.; Hatzimarinaki, M.; Lykakis, I. N.; Orfanopoulos, M. J. Org. Chem. 2006, 71, 829. doi: 10.1021/jo051838d

    25. [25]

      (25) Chen, C. B. Synthesis, Isolation and Properties of Titanium- Based Novel Endohedral Fullerenes. Ph. D. Dissertation, University of Science and Technology of China, Hefei, 2011. [陈传宝. 含金属钛的新型内嵌富勒烯的合成, 分离及性质研 [D]. 合肥: 中国科技大学, 2011.]

    26. [26]

      (26) Jia, G. X.; Li, X. G.; Song, X.W.; Li, J. Q.; Chen, Y. Surf. Sci. 2013, 608, 122. doi: 10.1016/j.susc.2012.09.025

    27. [27]

      (27) Branz, W.; Billas, I. M. L.; Malinowski, N.; Tast, F.; Heinebrodt, M.; Martin, T. P. J. Chem. Phys. 1998, 109, 3425. doi: 10.1063/1.477410

    28. [28]

      (28) Jia, G. X. Electronic Structures of Carbon Nanotubes and Fullerenes and Chemical Anisotropies: A Density Functional Theory Study. Ph. D. Dissertation, Fuzhou University, Fuzhou, 2007. [贾桂霄. 碳纳米管和富勒烯的电子结构及其化学各向异性的理论研究[D]. 福州: 福州大学, 2007.]

    29. [29]

      (29) Axel, D. B. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913

    30. [30]

      (30) Lu, X.; Chen, Z. F.; Thiel, W.; Schleyer, P. v. R.; Huang, R. B.; Zheng, L. S. J. Am. Chem. Soc. 2004, 126, 14871. doi: 10.1021/ja046725a

    31. [31]

      (31) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision B.05; Gaussian Inc.: Pittsburgh, PA, 2003.


  • 加载中
    1. [1]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    2. [2]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    3. [3]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    4. [4]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    5. [5]

      Mingxuan Qi Lanyu Jin Honghe Yao Zipeng Xu Teng Cheng Qi Chen Cheng Zhu Yang Bai . 钙钛矿太阳能电池在反向偏压下的电学失效及稳定性研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-. doi: 10.1016/j.actphy.2025.100088

    6. [6]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    9. [9]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    10. [10]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    11. [11]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    12. [12]

      Yihan Xue Xue Han Jie Zhang Xiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-. doi: 10.1016/j.actphy.2025.100072

    13. [13]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    14. [14]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    15. [15]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    16. [16]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    17. [17]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    18. [18]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    19. [19]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    20. [20]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

Metrics
  • PDF Downloads(232)
  • Abstract views(746)
  • HTML views(54)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return