Citation: ZHANG Ping, WANG Yi, FU Li-Min, AI Xi-Cheng, ZHANG Jian-Ping. Application of a Simplified Diode Characteristic Model in Current-Voltage Curve Fitting and Evaluation of Photoelectric Parameters within Dye-Sensitized Solar Cell[J]. Acta Physico-Chimica Sinica, ;2015, 31(6): 1113-1117. doi: 10.3866/PKU.WHXB201503192 shu

Application of a Simplified Diode Characteristic Model in Current-Voltage Curve Fitting and Evaluation of Photoelectric Parameters within Dye-Sensitized Solar Cell

  • Received Date: 9 February 2015
    Available Online: 19 March 2015

    Fund Project: 国家自然科学基金(21133001, 20933010) (21133001, 20933010)中央高校基础研究经费(10XNI007)资助项目 (10XNI007)

  • In the present work, we investigated the dynamics of charge collection and recombination in dyesensitized solar cells (DSSCs) spanning a large region of bias voltages using transient photoconductivity. The rate of charge collection was much faster than that of charge recombination at varied voltages, which was responsible for the nearly uniform charge collection efficiency. Based on this result, we simplified the diode characteristic model, which allowed us to directly fit the current-voltage (I-V) curve. A series of parameters related to the photo-to-electric processes in working DSSCs could be extracted from the proposed model, which could be used to evaluate the processes of charge generation, transport, and recombination in DSSCs, as well as the rectification of DSSC devices. We applied the fitting method to DSSCs with different 4-tert-butyl pyridine (TBP) concentrations of electrolyte. It was found that the rate of charge recombination significantly differed while that of charge collection was rather constant under different TBP concentrations, which was in od agreement with the results of I-V curve fitting. In addition, this research shows that the change of TBP concentration significantly affects the ideality factor (m) of DSSC devices.

  • 加载中
    1. [1]

      (1) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737. doi: 10.1038/353737a0

    2. [2]

      (2) Lenzmann, F. O.; Kroon, J. M. Advances in OptoElectronics 2007, 2007, 65073. doi: 10.1155/2007/65073

    3. [3]

      (3) Kuciauskas, D.; Monat, J. E.; Villahermosa, R.; Gray, H. B.; Lewis, N. S.; McCusker, J. K. J. Phys. Chem. B 2002, 106, 9347. doi: 10.1021/jp014589f

    4. [4]

      (4) Luo, J.; Xu, M. F.; Li, R. Z.; Huang, K.W.; Jiang, C. Y.; Qi, Q. B.; Zeng, W. D.; Zhang, J.; Chi, C. Y.; Wang, P.; Wu, J. S. J. Am. Chem. Soc. 2014, 136, 265. doi:10.1021/ja409291g

    5. [5]

      (5) (a) Xie, Y.; Joshi, P.; Darling, S. B.; Chen, P. L.; Zhang, T.; Galipeau, D.; Qiao, Q. Q. J. Phys. Chem. C 2010, 114, 17880. doi: 10.1021/jp106302m

    6. [6]

      (b) Zhang, R. K.; Sun, Z.; Xie, H. H.; Liang, M.; Xue, S. Acta Phys. -Chim. Sin. 2012, 28, 1139. [张仁开, 孙喆, 谢焕焕, 梁茂, 薛松. 物理化学学报, 2012, 28, 1139.] doi: 10.3866/PKU.WHXB201202233

    7. [7]

      (6) (a) Zhu, F.; Wu, D. P.; Li, Q.; Dong, H.; Li, J. M.; Jiang, K.; Xu, D. S. RSC Adv. 2012, 2, 11629. doi: 10.1039/c2ra22043a

    8. [8]

      (b) Gao, S.W.; Lan, Z.; Wu, W. X.; Que, L. F.; Wu, J. H. Acta Phys. -Chim. Sin. 2014, 30, 446. [高素雯, 兰章, 吴晚霞, 阕兰芳, 吴季怀. 物理化学学报, 2014, 30, 446.] doi: 10.3866/PKU.WHXB201401022

    9. [9]

      (7) Ishibashi, K.; Kimura, Y.; Niwano, M. J. Appl. Phys. 2008, 103, 094507. doi: 10.1063/1.2895396

    10. [10]

      (8) Zhang, C. F.; Zhang, J. C.; Hao, Y.; Lin, Z. H.; Zhu, C. X. J. Appl. Phys. 2011, 110, 064504. doi:10.1063/1.3632971

    11. [11]

      (9) Sarker, S.; Seo, H.W.; Kim, D. M. J. Power Sources 2014, 248, 739. doi:10.1016/j.jpowsour.2013.09.101

    12. [12]

      (10) Han, L. Y.; Koide, N.; Chiba, Y.; Mitate, T. Appl. Phys. Lett. 2004, 84, 13. doi: 10.1063/1.1690495

    13. [13]

      (11) Fisher, A. C.; Peter, L. M.; Ponomarev, E. A.; Walker, A. B.; Wijayantha, K. G. U. J. Phys. Chem. B 2000, 104, 949. doi: 10.1021/jp993220b

    14. [14]

      (12) Dloczik, L.; Ileperuma, O.; Lauermann, I.; Peter, L. M.; Ponomarev, E. A.; Redmond, G.; Shaw, N. J.; Uhlendorf, I. J. Phys. Chem. B 1997, 101, 10281. doi:10.1021/jp972466i

    15. [15]

      (13) Bisquert, J. J. Phys. Chem. C 2007, 111, 17163. doi:10.1021/jp077419x

    16. [16]

      (14) Duffy, N.W.; Peter, L. M.; Rajapakse, R. M. G.; Wijayantha, K. G. U. Electrochem. Commun. 2000, 2, 658. doi: 10.1016/S1388-2481(00)00097-7

    17. [17]

      (15) Jennings, J. R.; Ghicov, A.; Peter, L. M.; Schmuki, P.; Walker, A. B. J. Am. Chem. Soc. 2008, 130, 13364. doi:10.1021/ja804852z

    18. [18]

      (16) Katoh, R.; Kasuya, M.; Kodate, S.; Furube, A.; Fuke, N.; Koide, N. J. Phys. Chem. C 2009, 113, 20738. doi: 10.1021/jp906190a

    19. [19]

      (17) Shi, C.W.; Dai, S. Y.; Wang, K. J.; Pang, X.; Kong, F. T.; Hu, L. H. Vibrational Spectroscopy 2005, 39, 99. doi: 10.1016/j.vibspec.2005.01.002

    20. [20]

      (18) O'Regan, B.; Bakker, K.; Kroeze, J.; Smit, H.; Sommeling, P.; Durrant, J. R. J. Phys. Chem. B 2006, 110, 17155. doi: 10.1021/jp062761f

    21. [21]

      (19) Sauvage, F.; Chen, D. H.; Comte, P.; Huang, F. Z.; Heiniger, L. P.; Cheng, Y. B.; Caruso, R. A.; Grätzel, M. ACS Nano 2010, 4, 4420. doi: 10.1021/nn1010396

    22. [22]

      (20) Nakade, S.; Kanzaki, T.; Kubo, W.; Kitamura, T.; Wada, Y.; Yanagida, S. J. Phys. Chem. B 2005, 109, 3480. doi: 10.1021/jp0460036

    23. [23]

      (21) Hara, K.; Dan-oh, Y.; Kasada, C.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama, K.; Arakawa, H. Langmuir 2004, 20, 4205. doi: 10.1021/la0357615

    24. [24]

      (22) Zhang, P. P.; Zhu, F.; Ai, X. C.; Fu, L. M.; Xu, D. S.; Zhang, J. P. Chem. J. Chin. Univ. 2013, 34, 418. [张盼盼, 朱枫, 艾希成, 付立民, 徐东升, 张建平. 高等学校化学学报, 2013, 34, 418.] doi: 10.7503/cjcu20120159

    25. [25]

      (23) Ma, T. L.; Yun, S. N. Dye Sensitized Solar Cell——from Theoretic Foundation to Technical Application; Chemical Industry Press: Beijing, 2013; pp 24-27. [马庭丽, 云斯宁. 染料敏化太阳能电池——从理论基础到技术应用. 北京: 化学工业出版社, 2013: 24-27.]


  • 加载中
    1. [1]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    2. [2]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    3. [3]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    4. [4]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    5. [5]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    6. [6]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    7. [7]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

    8. [8]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    9. [9]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    10. [10]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    11. [11]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086

    12. [12]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    13. [13]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    14. [14]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    15. [15]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    16. [16]

      Shuige ZhaoPengcheng YanPeipei LiuHaishan LiuNing LiPeng FuWeiming Zhu . Pyridapeptides F‒I, cyclohexapeptides from marine sponge-derived Streptomyces sp. OUCMDZ-4539. Chinese Chemical Letters, 2024, 35(7): 108950-. doi: 10.1016/j.cclet.2023.108950

    17. [17]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    18. [18]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    19. [19]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    20. [20]

      Xiangkang JiangZhixing WangHong DongXiang ZhangJin HuManman ChuYanshuai HongLei XuWenjie PengXiqian YuJiexi Wang . An in-depth understanding of Al doping homogeneity affecting the performance of LiCoO2 at cut-off voltage over 4.6 V. Chinese Chemical Letters, 2024, 35(12): 109553-. doi: 10.1016/j.cclet.2024.109553

Metrics
  • PDF Downloads(309)
  • Abstract views(764)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return