Citation:
XU Jing, YANG De-Zhi, LIAO Xiao-Zhen, HE Yu-Shi, MA Zi-Feng. Electrochemical Performances of Reduced Graphene Oxide/Titanium Dioxide Composites for Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinica,
;2015, 31(5): 913-919.
doi:
10.3866/PKU.WHXB201503162
-
Anatase TiO2 shows excellent long-term cycling stability as an anode for sodium-ion batteries. However, the low specific capacity and poor rate capability resulting from its intrinsic low electrical conductivity limit its applications. In this work, TiO2 nanoparticles were coated with reduced graphene oxide (R ) using a combination of spray-drying and heat treatment. Electrochemical tests showed that the obtained R /TiO2 composites had improved electrochemical performances. The reversible capacities of the R /TiO2 [4.0% (w)] composites were 183.7 mAh·g-1 (20 mA·g-1), 153.7 mAh·g-1 (100 mA·g-1), and 114.4 mAh·g-1 (600 mA·g-1). Bare TiO2 showed low capacities of 93.6mAh·g-1 (20mA·g-1), 69.6mAh·g-1 (100mA·g-1), and 26.5mAh·g-1 (600 mA·g-1). The 4.0%(w) TiO2/R composites exhibited od cycling stability with a charge capacity of 146.7 mAh·g-1 at a current density of 100 mA·g-1 after 350 cycles, compared with 68.8 mAh·g-1 for bare TiO2. R modification is a promising method for improving the electrochemical performances of the sodium energystorage materials.
-
-
-
[1]
(1) Ong, S. P.; Chevrier, V. L.; Hautier, G.; Jain, A.; Moore, C.; Kim, S.; Ma, X.; Ceder, G. Energy Environ. Sci. 2011, 4, 3680. doi: 10.1039/c1ee01782a
-
[2]
(2) Pan, H.; Hu, Y. S.; Chen, L. Energy Environ. Sci. 2013, 6, 2338. doi: 10.1039/c3ee40847g
-
[3]
(3) Chevrier, V.; Ceder, G. J. Electrochem. Soc. 2011, 158, A1011.
-
[4]
(4) Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero- nzález, J.; Rojo, T. Energy Environ. Sci. 2012, 5, 5884. doi: 10.1039/c2ee02781j
-
[5]
(5) Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Adv. Funct. Mater. 2013, 23, 947. doi: 10.1002/adfm.v23.8
-
[6]
(6) Alcántara, R.; Jiménez-Mateos, J. M.; Lavela, P.; Tirado, J. L. Electrochem. Commun. 2001, 3, 639. doi: 10.1016/S1388-2481(01)00244-2
-
[7]
(7) Alcántara, R.; Lavela, P.; Ortiz, G. F.; Tirado, J. L. Electrochem. Solid-State Lett. 2005, 8, A222.
-
[8]
(8) Doeff, M. M.; Ma, Y.; Visco, S. J.; De Jonghe, L. C. J. Electrochem. Soc. 1993, 140, L169.
-
[9]
(9) Stevens, D.; Dahn, J. R. J. Electrochem. Soc. 2000, 147, 1271. doi: 10.1149/1.1393348
-
[10]
(10) Stevens, D.; Dahn, J. R. J. Electrochem. Soc. 2001, 148, A803.
-
[11]
(11) Ong, S. P.; Chevrier, V. L.; Hautier, G.; Jain, A.; Moore, C.; Kim, S.; Ma, X.; Ceder, G. Energy Environ. Sci. 2011, 4, 3680. doi: 10.1039/c1ee01782a
-
[12]
(12) Huang, J. P.; Yuan, D. D.; Zhang, H. Z.; Cao, Y. L.; Li, G. R.; Yang, H. X.; Gao, X. P. RSC Adv. 2013, 3, 12593. doi: 10.1039/c3ra42413h
-
[13]
(13) Kavan, L.; Kratochvilová, K.; Grätzel, M. J. Electroanal. Chem. 1995, 394, 93. doi: 10.1016/0022-0728(95)03976-N
-
[14]
(14) Senguttuvan, P.; Rousse, G.; Seznec, V.; Tarascon, J. M.; Palacin, M. R. Chem. Mater. 2011, 23, 4109. doi: 10.1021/cm202076g
-
[15]
(15) Xu, Y.; Lotfabad, E. M.; Wang, H. L.; Farbod, B.; Xu, Z.W.; Kohandehghan, A.; Mitlin, D. Chem. Commun. 2013, 49, 8973. doi: 10.1039/c3cc45254a
-
[16]
(16) Komaba, S.; Matsuura, Y.; Ishikawa, T.; Yabuuchi, N.; Murata, W.; Kuze, S. Electrochem. Commun. 2012, 21, 650.
-
[17]
(17) Qian, J.; Chen, Y.; Wu, L.; Cao, Y.; Ai, X.; Yang, H. Chem. Commun. 2012, 48, 7070. doi: 10.1039/c2cc32730a
-
[18]
(18) Xiao, L.; Cao, Y.; Xiao, J.; Wang, W.; Kovarik, L.; Nie, Z.; Liu, J. Chem. Commun. 2012, 48, 3321. doi: 10.1039/c2cc17129e
-
[19]
(19) Park, Y.; Shin, D. S.; Woo, S. H.; Choi, N. S.; Shin, K. H.; Oh, S. M.; Lee, K. T.; Hong, S. Y. Adv. Mater. 2012, 24, 3562. doi: 10.1002/adma.201201205
-
[20]
(20) Zhu, L.; Niu, Y.; Cao, Y.; Lei, A.; Ai, X.; Yang, H. Electrochim. Acta 2012, 78, 27. doi: 10.1016/j.electacta.2012.05.152
-
[21]
(21) Zhao, L.; Zhao, J.; Hu, Y. S.; Li, H.; Zhou, Z.; Armand, M.; Chen, L. Adv. Energy Mater. 2012, 2, 962. doi: 10.1002/aenm.v2.8
-
[22]
(22) Hummers, W. S., Jr.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339. doi: 10.1021/ja01539a017
-
[23]
(23) Dambournet, D.; Belharouak, I.; Amine, K. Chem. Mater. 2009, 22, 1173.
-
[24]
(24) Wagemaker, M.; van de Krol, R.; Kentgens, A. P.; VanWell, A. A.; Mulder, F. M. J. Am. Chem. Soc. 2001, 123, 11454. doi: 10.1021/ja0161148
-
[1]
-
-
-
[1]
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
-
[2]
Zhuo WANG , Xiaotong LI , Zhipeng HU , Junqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223
-
[3]
Yu Guo , Zhiwei Huang , Yuqing Hu , Junzhe Li , Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015
-
[4]
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
-
[5]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[6]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[7]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[8]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[9]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[10]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[11]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[12]
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
-
[13]
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
-
[14]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[15]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[16]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[17]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[18]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[19]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[20]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[1]
Metrics
- PDF Downloads(346)
- Abstract views(676)
- HTML views(48)