Citation:
WANG Ruo-Xi, ZHANG Dong-Ju, LIU Cheng-Bu. Theoretical Study of Adsorption of Chlorinated Phenol Pollutants on Co-Doped Boron Nitride Nanotubes[J]. Acta Physico-Chimica Sinica,
;2015, 31(5): 877-884.
doi:
10.3866/PKU.WHXB201503161
-
Chlorinated phenols (CPs) are the main precursors for forming the persistent organic pollutants dioxins and have strong teratogenicity, carcinogenicity, and mutagenicity. To explore the novel material for the removal or detection of these pollutants, we used density functional theory calculations to investigate the adsorption behaviors and interaction mechanisms of 2-chlorophenol (2-CP), 2,4,6-trichlorophenol (TCP), and pentachlorophenol (PCP) on pristine and Co-doped (8,0) single-walled boron nitride nanotubes (denoted by BNNT and Co-BNNT, respectively). The results show that compared with BNNT, Co-BNNT introduces local states near the Fermi levels, and has a smaller band gap. BNNT physisorbs 2-CP, TCP, and PCP molecules, whereas Co-BNNT presents chemisorption towards them. Charge-transfer between Co-BNNT and molecules can be clearly observed and the electronic densities of states of the doped systems change significantly near the Fermi levels after adsorption of molecules. Doping with Co atom significantly increases the electronic transport capability of BNNT and enhances the adsorption reactivity of the tube to CPs. Co-BNNT is expected to be a potential material for removing or detecting CPs pollutants.
-
-
-
[1]
(1) Kauffman, D. R.; Sorescu, D. C.; Schofield, D. P.; Allen, B. L.; Jordan, K. D.; Star, A. Nano Lett. 2010, 10, 958. doi: 10.1021/nl903888c
-
[2]
(2) Girao, E. C.; Fagan, S. B.; Zanella, I.; Filho, A. G. S. Journal of Hazardous Materials 2010, 184, 678. doi: 10.1016/j.jhazmat.2010.08.091
-
[3]
(3) Chen, G. C.; Shan, X. Q.; Pei, Z. G.; Wang, H. H.; Zheng, L. R.; Zhang, J.; Xie, Y. N. Journal of Hazardous Materials 2011, 188, 156. doi: 10.1016/j.jhazmat.2011.01.095
-
[4]
(4) Rubio, A.; Corkill, J. L.; Cohen, M. L. Phys. Rev. B 1994, 49, 5081. doi: 10.1103/PhysRevB.49.5081
-
[5]
(5) Chopra, N. G.; Luyken, R. J.; Cherrey, K.; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A. Science 1995, 269, 966. doi: 10.1126/science.269.5226.966
-
[6]
(6) Ma, R. Z.; Bando, Y.; Zhu, H.W.; Sato, T.; Xu, C.; Wu, D. H. J. Am. Chem. Soc. 2002, 124, 7672. doi: 10.1021/ja026030e
-
[7]
(7) Gao, Y, F.; Meng, Q. Y.; Zhang, L.; Liu, J. Q.; Jing, Y. H. Acta Phys. -Chim. Sin. 2012, 28, 1077. [高宇飞, 孟庆元, 张璐, 刘甲秋, 荆宇航. 物理化学学报, 2012, 28, 1077.] doi: 10.3866/PKU.WHXB201202273
-
[8]
(8) Zhao, J. X.; Ding, Y. H. J. Chem. Phys. 2009, 131, 014706. doi: 10.1063/1.3167409
-
[9]
(9) Choi, H.; Park, Y. C.; Kim, Y. H.; Lee, Y. S. J. Am. Chem. Soc. 2011, 133, 2084. doi: 10.1021/ja1101807
-
[10]
(10) Yu, Y. L.; Chen, H.; Liu, Y.; Li, L. H.; Chen, Y. Electrochemistry Communications 2013, 30, 29. doi: 10.1016/j.elecom.2013.01.026
-
[11]
(11) Wu, X. J.; Yang, J. L.; Zeng, X. C. J. Am. Chem. Soc. 2006, 128, 12001. doi: 10.1021/ja063653+
-
[12]
(12) Chen, R. Z.; Zhi, C. Y.; Yang, H.; Bando, Y.; Zhang, Z. Y.; Sugiur, N.; lberg, D. J. Colloid Interface Sci. 2011, 359, 261. doi: 10.1016/j.jcis.2011.02.071
-
[13]
(13) Ponraj, S. B.; Chen, Z. Q.; Li, L. H.; Shankaranarayanan, J. S.; Rajmohan, G. D.; Plessis, J. D.; Sinclair, A. J.; Chen, Y.; Wang, X. G.; Kanwar, J. R.; Dai, X. J. Langmuir 2014, 30, 10712. doi: 10.1021/la502960h
-
[14]
(14) Zhao, J. X.; Ding, Y. H. Diamond and Related Mater. 2010, 19, 1073. doi: 10.1016/j.diamond.2010.03.011
-
[15]
(15) Anota, E. C.; Cocoletzi, G. H. J. Mol. Model 2013, 19, 2335. doi: 10.1007/s00894-013-1782-3
-
[16]
(16) Fan, Y.; Wang, Y. S.; Lou, J. S.; Xu, S. F.; Zhang, L. G.; An, L. N. J. Am. Ceram. Soc. 2006, 89, 740. doi: 10.1111/jace.2006.89.issue-2
-
[17]
(17) Wang, Q.; Liu, Y. J.; Zhao, J. X. J. Mol. Model. 2013, 19, 1143. doi: 10.1007/s00894-012-1662-2
-
[18]
(18) Beheshtian, J.; Peyghan, A. A.; Tabar, M. B.; Bagheri, Z. Appl. Surf. Sci. 2013, 266, 182. doi: 10.1016/j.apsusc.2012.11.128
-
[19]
(19) Wu, X. J.; Yang, J. L.; Hou, J. G.; Zhu, Q. S. J. Chem. Phys. 2006, 124, 54706. doi: 10.1063/1.2162897
-
[20]
(20) Wu, X. J.; Yang, J. L.; Zeng, X. C. J. Chem. Phys. 2006, 125, 044704. doi: 10.1063/1.2210933
-
[21]
(21) Tang, C. C.; Bando, Y.; Huang, Y.; Yue, S. L.; Gu, C. Z.; Xu, F. F.; lberg, D. J. Am. Chem. Soc. 2005, 127, 6552. doi: 10.1021/ja042388u
-
[22]
(22) Wang, R. X.; Zhang, D. J.; Liu, Y. J.; Liu, C. B. Nanotechnology 2009, 20, 505704. doi: 10.1088/0957-4484/20/50/505704
-
[23]
(23) Xie, Y.; Zhang, J. M. Comput. Theor. Chem. 2011, 976, 215. doi: 10.1016/j.comptc.2011.08.031
-
[24]
(24) Li, X. M.; Tian, W. Q.; Dong, Q.; Huang, X. R.; Sun, C. C.; Jiang, L. Comput. Theor. Chem. 2011, 964, 199. doi: 10.1016/j.comptc.2010.12.026
-
[25]
(25) Zhao, J. X.; Ding, Y. H. J. Phys. Chem. C 2008, 112, 5778. doi: 10.1021/jp7121196
-
[26]
(26) Tontapha, S.; Ruangpornvisuti, V.; Wanno, B. J Mol. Model. 2013, 19, 239. doi: 10.1007/s00894-012-1537-6
-
[27]
(27) Shao, P.; Kuang, X. Y.; Ding, L. P.; Yang, J.; Zhong, M. M. Appl. Surf. Sci. 2013, 285, 350. doi: 10.1016/j.apsusc.2013.08.061
-
[28]
(28) Morais, P. D.; Stoichev, T.; Basto, M.; Vasconcelos, M. Talanta 2012, 89, 1. doi: 10.1016/j.talanta.2011.12.044
-
[29]
(29) Becker, R.; Buge, H. G.; Win, T. Chemosphere 2002, 47, 1001. doi: 10.1016/S0045-6535(02)00004-8
-
[30]
(30) Chen, G. C.; Shan, X. Q.; Wang, Y. S.; Wen, B.; Pei, Z. G.; Xie, Y. N.; Liu, T.; Pignatello, J. J. Water Res. 2009, 43, 2409. doi: 10.1016/j.watres.2009.03.002
-
[31]
(31) Long, R. Q.; Yang, R. T. J. Am. Chem. Soc. 2001, 123, 2058. doi: 10.1021/ja003830l
-
[32]
(32) Zolgharnein, J.; Shariatmanesh, T.; Babaei, A. Sensors and Actuators B 2013, 186, 536. doi: 10.1016/j.snb.2013.06.040
-
[33]
(33) Zheng, Y. Q.; Yang, C. Z.; Zhang, J. D.; Pu, W. H.; Long, F.; Chen, X. F. Chinese Journal of Analysis Laboratory 2008, 27 (10), 1. [郑燕琼, 杨昌柱, 张敬东, 濮文虹, 龙峰, 陈晓峰. 分析试验室, 2008, 27 (10), 1.]
-
[34]
(34) Modi, A.; Koratkar, N.; Lass, E.; Wei, B.; Ajayan, P. M. Nature 2003, 424, 171. doi: 10.1038/nature01777
-
[35]
(35) Fu, M. Z.; Xing, H. Z.; Chen, X. F.; Zhao, R. S.; Zhi, C. Y.; Wu, C. L. Anal. Bioanal. Chem. 2014, 406, 5751. doi: 10.1007/s00216-014-8032-0
-
[36]
(36) Delley, B. J. Chem. Phys. 2000, 113, 7756. doi: 10.1063/1.1316015
-
[37]
(37) Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244. doi: 10.1103/PhysRevB.45.13244
-
[38]
(38) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188. doi: 10.1103/PhysRevB.13.5188
-
[1]
-
-
-
[1]
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060
-
[2]
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
-
[3]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[4]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[5]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[6]
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
-
[7]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[8]
Jing Wang , Pingping Li , Yuehui Wang , Yifan Xiu , Bingqian Zhang , Shuwen Wang , Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097
-
[9]
Fugui XI , Du LI , Zhourui YAN , Hui WANG , Junyu XIANG , Zhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291
-
[10]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[11]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[12]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[13]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[14]
Shuanglin TIAN , Tinghong GAO , Yutao LIU , Qian CHEN , Quan XIE , Qingquan XIAO , Yongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482
-
[15]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[16]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[17]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[18]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[19]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[20]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[1]
Metrics
- PDF Downloads(280)
- Abstract views(556)
- HTML views(2)