Citation: LI Shang-Jun, TAN Ning-Xin, YAO Qian, LI Ze-Rong, LI Xiang-Yuan. Calculation of Rate Constants for Intramolecular Hydrogen Migration Reactions of Alkylperoxy Radicals[J]. Acta Physico-Chimica Sinica, ;2015, 31(5): 859-865. doi: 10.3866/PKU.WHXB201503131 shu

Calculation of Rate Constants for Intramolecular Hydrogen Migration Reactions of Alkylperoxy Radicals

  • Received Date: 27 November 2014
    Available Online: 13 March 2015

    Fund Project: 国家自然科学基金(91441114)资助项目 (91441114)

  • Intramolecular hydrogen migration in alkylperoxy reactions is one of the most important reaction classes in hydrocarbon combustion at low temperatures. In this study, the kinetic parameters for reactions in this class were calculated using the isodesmic reaction method. The geometries for all the reactants, transition states, and products were optimized at the B3LYP/6-311+G(d,p) level. A criterion based on conservation of the reaction-center geometry of the transition state was proposed for the reaction class, and the intramolecular hydrogen migration reactions studied were divided into four classes, i.e., (1,3), (1,4), (1,5), and (1,n) (n=6, 7, 8) hydrogen migration. The simplest reaction system for each reaction class was defined as the principal reaction; the approximate single-point energies were obtained at the low level of B3LYP/6-311+G(d,p) and accurate single-point energies were obtained at the high level of CBS-QB3. The other reactions in this class were chosen as the target reactions and the approximate single-point energies were obtained at the B3LYP/6- 311+G(d,p) level. The energy barriers and rate constants of these target reactions were corrected using the isodesmic reaction method. The results showed that accurate energy barriers and rate constants for the reactions of large molecules can be obtained by a relatively low level method using the isodesmic reaction method. In this study, classification of the basic isodesmic reaction showed the essential features of the reaction classes. The present work provides accurate kinetic parameters for modeling intramolecular hydrogen migration reactions of hydrocarbons at low temperatures.

  • 加载中
    1. [1]

      (1) Battin-Leclerc, F. Prog. Energy Combust. Sci. 2008, 34, 440. doi: 10.1016/j.pecs.2007.10.002

    2. [2]

      (2) Pousse, E.; Glaude, P. A.; Fournet, R.; Battin-Leclerc, F. Combust. Flame 2009, 156, 954. doi: 10.1016/j.combustflame.2008.09.012

    3. [3]

      (3) Taatjes, C. A. J. Phys. Chem. A 2006, 110, 4299. doi: 10.1021/jp056997f

    4. [4]

      (4) Walker, R.W.; Morley, C. Basic Chemistry of Combustion. In Low-Temperature Combustion and Autoignition; Pilling, M. J. Ed.; Elsevier: Amsterdam, The Netherlands, 1997; pp 1-124.

    5. [5]

      (5) Zádor, J.; Taatjes, C. A.; Fernandes, R. X. Prog. Energy Combust. Sci. 2011, 37, 371. doi: 10.1016/j.pecs.2010.06.006

    6. [6]

      (6) Miller, J. A.; Klippenstein, S. J.; Robertson, H. Proc. Combust. Inst. 2000, 28, 1479. doi: 10.1016/S0082-0784(00)80544-5

    7. [7]

      (7) Villano, S. M.; Huynh, L. K.; Carstensen, H. H.; Dean, A. M. J. Phys. Chem. A 2012, 116, 5068. doi: 10.1021/jp3023887

    8. [8]

      (8) Villano, S. M.; Huynh, L. K.; Carstensen, H. H.; Dean, A. M. J. Phys. Chem. A 2011, 115, 13425. doi: 10.1021/jp2079204

    9. [9]

      (9) Zhang, F.; Dibble, T. S. J. Phys. Chem. A 2011, 115, 655. doi:10.1021/jp1111839

    10. [10]

      (10) Sharma, S.; Raman, S.; Green, W. H. J. Phys. Chem. A 2010, 114, 5689. doi: 10.1021/jp9098792

    11. [11]

      (11) Miyoshi, A. J. Phys. Chem. A 2011, 115, 3301. doi: 10.1021/jp112152n

    12. [12]

      (12) Truong, T. N. J. Chem. Phys. 2000, 113, 4957. doi: 10.1063/1.1287839

    13. [13]

      (13) Huynh, L. K.; Ratkiewicz, A.; Truong, T. N. J. Phys. Chem. A 2006, 110, 473. doi: 10.1021/jp051280d

    14. [14]

      (14) Muszynska, M.; Ratkiewicz, A.; Huynh, L. K.; Truong, T. N. J. Phys. Chem. A 2009, 113, 8327. doi: 10.1021/jp903762x

    15. [15]

      (15) Bankiewicz, B; Huynh, L. K.; Ratkiewicz, A.; Truong, T. N. J. Phys. Chem. A 2009, 113, 1564. doi: 10.1021/jp808874j

    16. [16]

      (16) Zhang, S.W.; Truong, T. N. J. Phys. Chem. A 2003, 107, 1138. doi: 10.1021/jp021265y

    17. [17]

      (17) Kungwan, N.; Truong, T. N. J. Phys. Chem. A 2005, 109, 7742. doi: 10.1021/jp051799+

    18. [18]

      (18) Huynh, L. K.; Truong, T. N. Theor. Chem. Account 2008, 120, 107. doi: 10.1007/s00214-007-0311-9

    19. [19]

      (19) Wang, B. Y.; Li, Z. R.; Tan, N. X.; Yao, Q.; Li, X. Y. J. Phys. Chem. A 2013, 117, 3279. doi: 10.1021/jp400924w

    20. [20]

      (20) Wang, B. Y.; Tan, L. X.; Yao, Q.; Li, Z. R.; Li, X. Y. Acta Phys. -Chim. Sin. 2012, 28, 2824. [汪必耀, 谈宁馨, 姚倩, 李泽荣, 李象远. 物理化学学报, 2012, 28, 2824.] doi: 10.3866/PKU.WHXB201209053

    21. [21]

      (21) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision B.01; Gaussian Inc.: Pittsburgh, PA, 2003.

    22. [22]

      (22) Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502. doi: 10.1021/jp960976r

    23. [23]

      (23) NIST. Computational Chemistry Comparison and Benchmark Database. NIST Standard Reference Database Number 101. 2013, available at http://webbook.nist. v/

    24. [24]

      (24) Mont mery, J. A.; Frisch, M. J.; Ochterski, J.W.; Petersson, G. A. J. Chem. Phys. 1999, 110, 2822. doi: 10.1063/1.477924

    25. [25]

      (25) Zhu, L.; Bozzelli, J.W.; Kardos, L. M. J. Phys. Chem. A 2007, 111, 6361. doi: 10.1021/jp070342s

    26. [26]

      (26) Mokrushin, V.; Tsang, W. Chemrate v.1.5.8; National Institute of Standards and Technology: Gaithersburg, MD, 2009.

    27. [27]

      (27) Sheng, C. Y.; Bozzelli, J.W.; Dean, A. M.; Chang, A. Y. J. Phys. Chem. A 2002, 106, 7276. doi: 10.1021/jp014540+

    28. [28]

      (28) Huynh, L. K.; Carstensen, H. H.; Dean, A. M. J. Phys. Chem. A 2010, 114, 6594.

    29. [29]

      (29) Baldwin, R. R.; Hisham, M.W. M.; Walker, R.W. J. Chem. Soc. Faraday Trans. 1 1982, 78, 1615. doi: 10.1039/f19827801615


  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    3. [3]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    4. [4]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    5. [5]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    6. [6]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    7. [7]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    8. [8]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    9. [9]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    10. [10]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    11. [11]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    12. [12]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    13. [13]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    14. [14]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    15. [15]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    16. [16]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

    17. [17]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    18. [18]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    19. [19]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    20. [20]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

Metrics
  • PDF Downloads(238)
  • Abstract views(443)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return