Citation: JIN Huan, WANG Juan, JI Yun, CHEN Mei-Mei, ZHANG Yi, WANG Qi, CONG Yan-Qing. Synthesis of Ta/Al-Fe2O3 Film Electrode and Its Photoelectrocatalytic Performance in Methylene Blue Degradation[J]. Acta Physico-Chimica Sinica, ;2015, 31(5): 955-964. doi: 10.3866/PKU.WHXB201503112 shu

Synthesis of Ta/Al-Fe2O3 Film Electrode and Its Photoelectrocatalytic Performance in Methylene Blue Degradation

  • Received Date: 9 January 2015
    Available Online: 11 March 2015

    Fund Project: 国家自然科学基金(21477114) (21477114) 浙江省中青年学科带头人基金(PD2013170) (PD2013170) 浙江省自然科学基金(LY14E080002, LY14B070002, R5100266) (LY14E080002, LY14B070002, R5100266)浙江工商大学研究生科技创新项目(1260XJ1513152)资助 (1260XJ1513152)

  • A novel visible-light-responsive photoanode (Ta/Al-Fe2O3) was fabricated by co-doping Ta and Al into iron oxide. The properties of the prepared electrodes were examined using X- ray photoelectron spectroscopy (XPS) and ultraviolet-visible (UV-Vis) diffuse reflectance spectroscopy. XPS analysis suggested that the surface chemical environments of Al and O were significantly affected by Ta doping. Photoelectrochemical (PEC), electrocatalytic (EC), and photocatalytic (PC) degradations of methylene blue (MB) were performed using Ta/Al-Fe2O3 and Al-Fe2O3 electrodes as the photoanodes. The results indicated that synergetic effects in PEC enhanced the MB degradation efficiency compared with the individual PC or EC processes. The estimated rate constant for MB degradation on Ta/Al-Fe2O3 was about twice that on Al-Fe2O3 under visible-light irradiation in the PEC process. The greatly improved visible-light activity and film stability indicated that Ta doping was an efficient way to improve the PEC activity of Ta/Al-Fe2O3 films.

  • 加载中
    1. [1]

      (1) Guo, Y. F.; Quan, X.; Lu, N.; Zhao, H. M.; Chen, S. Environ. Sci. Technol. 2007, 41 (12), 4422. doi: 10.1021/es062546c

    2. [2]

      (2) Liu, Z.; Zhang, X.; Nishimoto, S.; Jin, M.; Tryk, D. A.; Murakami, T.; Fujishima, A. J. Phys. Chem. C 2008, 112 (1), 253. doi: 10.1021/jp0772732

    3. [3]

      (3) Park, H.; Bak, A.; Ahn, Y. Y.; Choi, J.; Hoffmannn, M. R. J. Hazard. Mater. 2012, 211, 47.

    4. [4]

      (4) Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Chem. Rev. 2010, 110 (11), 6503. doi: 10.1021/cr1001645

    5. [5]

      (5) Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D.W. Chem. Rev. 1995, 95 (1), 69. doi: 10.1021/cr00033a004

    6. [6]

      (6) Zhang, Z.; Hossain, M. F.; Takahashi, T. Appl. Catal. B-Environ. 2010, 95 (3-4), 423. doi: 10.1016/j.apcatb.2010.01.022

    7. [7]

      (7) Seabold, J. A.; Choi, K. S. J. Am. Chem. Soc. 2012, 134 (11), 2186.

    8. [8]

      (8) Hu, Y. S.; Kleiman-Shwarsctein, A.; Forman, A. J.; Hazen, D.; Park, J. N.; McFarland, E.W. Chem. Mater. 2008, 20 (12), 3803. doi: 10.1021/cm800144q

    9. [9]

      (9) Lin, Y. J.; Zhou, S.; Sheehan, S.W.; Wang, D.W. J. Am. Chem. Soc. 2011, 133 (8), 2398. doi: 10.1021/ja110741z

    10. [10]

      (10) Klahr, B.; Gimenez, S.; Fabregat-Santia , F.; Hamann, T.; Bisquert, J. J. Am. Chem. Soc. 2012, 134 (9), 4294. doi: 10.1021/ja210755h

    11. [11]

      (11) Kennedy, J. H.; Frese, K.W. J . Electrochem. Soc. 1978, 125 (5), 709. doi: 10.1149/1.2131532

    12. [12]

      (12) Mor, G. K.; Prakasam, H. E.; Varghese, O. K.; Shankar, K.; Grimes, C. A. Nano. Lett. 2007, 7 (8), 2356. doi: 10.1021/nl0710046

    13. [13]

      (13) Wei, Y. H.; Han, S. B.; Walker, D. A.; Warren, S. C.; Grzybowski, B. A. Chem. Sci. 2012, 3 (4), 1090. doi: 10.1039/c2sc00673a

    14. [14]

      (14) Zhang, J.; Liu, X. H.; Wang, L.W.; Yang, T. L.; Guo, X. Z.; Wu, S. H.; Wang, S. R.; Zhang, S. M. J. Phys. Chem. C 2011, 115 (13), 5352. doi: 10.1021/jp110421v

    15. [15]

      (15) Kay, A.; Cesar, I.; Grätzel, M. J. Am. Chem. Soc. 2006, 128 (49), 15714. doi: 10.1021/ja064380l

    16. [16]

      (16) Aroutiounian, V. M.; Arakelyan, V. M.; Shahnazaryan, G. E.; Stepanyan, G. M.; Turner, J. A.; Khaselev, O. Int. J. Hydrog. Energy 2002, 27 (1), 33. doi: 10.1016/S0360-3199(01)00085-4

    17. [17]

      (17) Jang, J. S.; Yoon, K. Y.; Xiao, X. Y.; Fan, F. R. F.; Bard, A. J. Chem. Mat. 2009, 21 (20), 4803. doi: 10.1021/cm901056c

    18. [18]

      (18) Hu, Y. S.; Kleiman-Shwarsctein, A.; Stucky, G. D.; McFarland, E.W. Chem. Commun. 2009, No. 19, 2652.

    19. [19]

      (19) Sartoretti, C. J.; Alexander, B. D.; Solarska, R.; Rutkowska, W. A.; Augustynski, J.; Cerny, R. J. Phys. Chem. B 2005, 109 (28), 13685. doi: 10.1021/jp051546g

    20. [20]

      (20) Zhu, L. P.; Bing, N. C.; Wang, L. L.; Jin, H. Y.; Liao, G. H.; Wang, L. J. Dalton Trans. 2012, 41 (10), 2959. doi: 10.1039/c2dt11822j

    21. [21]

      (21) Zhou, X. M.; Yang, H. C.; Wang, C. X.; Mao, X. B.; Wang, Y. S.; Yang, Y. L.; Liu, G. J. Phys. Chem. C 2010, 114 (40), 17051. doi: 10.1021/jp103816e

    22. [22]

      (22) Grosvenor, A. P.; Kobe, B. A.; Biesinger, M. C.; McIntyre, N. S. Surf. Interface Anal. 2004, 36 (12), 1564.

    23. [23]

      (23) Spray, R. L.; McDonald, K. J.; Choi, K. S. J. Phys. Chem. C 2011, 115 (8), 3497. doi: 10.1021/jp1093433

    24. [24]

      (24) Diaz, B.; Swiatowska, J.; Maurice, V.; Seyeux, A.; Harkonen, E.; Ritala, M.; Tervakangas, S.; Kolehmainen, J.; Marcus, P. Electrochim. Acta 2013, 90, 232. doi: 10.1016/j.electacta.2012.12.007

    25. [25]

      (25) Palma, R.; Laureyn, W.; Frederix, F.; Bonroy, K.; Pireaux, J. J.; Borghs, G.; Maes, G. Langmuir 2007, 23 (2), 443. doi: 10.1021/la061951e

    26. [26]

      (26) Cong, Y. Q.; Chen, M. M.; Xu, T.; Zhang, Y.; Wang, Q. Appl. Catal. B-Environ. 2014, 147, 733. doi: 10.1016/j.apcatb.2013.10.009

    27. [27]

      (27) Kleiman-Shwarsctein, A.; Hu, Y. S.; Forman, A. J.; Stucky, G. D.; McFarland, E.W. J. Phys. Chem. C 2008, 112 (40), 15900. doi: 10.1021/jp803775j

    28. [28]

      (28) Liu, H.; Wu, M.; Wu, H. J.; Sun, F. X.; Zheng, Y.; Li, W. Z. Acta Phys. -Chim. Sin. 2001, 17 (3), 286. [刘鸿, 吴鸣, 吴合进, 孙福侠, 郑云, 李文钊. 物理化学学报, 2001, 17 (3), 286.] doi: 10.3866/PKU.WHXB20010322

    29. [29]

      (29) Zhang, G. K.; Gao, Y. Y.; Zhang, Y. L.; Guo, Y. D. Environ. Sci. Technol. 2010, 44 (16), 6384. doi: 10.1021/es1011093

    30. [30]

      (30) Dhananjeyan, M. R.; Mielczarski, E.; Thampi, K. R.; Buffat, P.; Bensimon, M.; Kulik, A.; Mielczarski, J.; Kiwi, J. J. Phys. Chem. B 2001, 105 (48), 12046. doi: 10.1021/jp011339q

    31. [31]

      (31) Saleh, R.; Djaja, N. F. Superlattice Microst. 2014, 74, 217. doi: 10.1016/j.spmi.2014.06.013

    32. [32]

      (32) Li, G. T.; Wong, K. H.; Zhang, X.W.; Hu, C.; Yu, J. C.; Chan, R. C. Y.; Wong, P. K. Chemosphere 2009, 76 (9), 1185. doi: 10.1016/j.chemosphere.2009.06.027

    33. [33]

      (33) Li, G. T.; Song, H. Y.; Liu, B. T. Chin. J. Environ. Eng. 2012, 6 (10), 3388. [李国亭, 宋海燕, 刘秉涛. 环境工程学报, 2012, 6 (10), 3388.]

    34. [34]

      (34) Wu, J. F.; Li, Z.; Li, F. Superlattice Microst. 2013, 54, 146. doi: 10.1016/j.spmi.2012.11.008

    35. [35]

      (35) Wu, L.; Yu, J. C.; Fu, X. Z. J. Mol. Catal. A-Chem. 2006, 244 (1-2), 25.(1) Guo, Y. F.; Quan, X.; Lu, N.; Zhao, H. M.; Chen, S. Environ. Sci. Technol. 2007, 41 (12), 4422. doi: 10.1021/es062546c

    36. [36]

      (2) Liu, Z.; Zhang, X.; Nishimoto, S.; Jin, M.; Tryk, D. A.; Murakami, T.; Fujishima, A. J. Phys. Chem. C 2008, 112 (1), 253. doi: 10.1021/jp0772732

    37. [37]

      (3) Park, H.; Bak, A.; Ahn, Y. Y.; Choi, J.; Hoffmannn, M. R. J. Hazard. Mater. 2012, 211, 47.

    38. [38]

      (4) Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Chem. Rev. 2010, 110 (11), 6503. doi: 10.1021/cr1001645

    39. [39]

      (5) Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D.W. Chem. Rev. 1995, 95 (1), 69. doi: 10.1021/cr00033a004

    40. [40]

      (6) Zhang, Z.; Hossain, M. F.; Takahashi, T. Appl. Catal. B-Environ. 2010, 95 (3-4), 423. doi: 10.1016/j.apcatb.2010.01.022

    41. [41]

      (7) Seabold, J. A.; Choi, K. S. J. Am. Chem. Soc. 2012, 134 (11), 2186.

    42. [42]

      (8) Hu, Y. S.; Kleiman-Shwarsctein, A.; Forman, A. J.; Hazen, D.; Park, J. N.; McFarland, E.W. Chem. Mater. 2008, 20 (12), 3803. doi: 10.1021/cm800144q

    43. [43]

      (9) Lin, Y. J.; Zhou, S.; Sheehan, S.W.; Wang, D.W. J. Am. Chem. Soc. 2011, 133 (8), 2398. doi: 10.1021/ja110741z

    44. [44]

      (10) Klahr, B.; Gimenez, S.; Fabregat-Santia , F.; Hamann, T.; Bisquert, J. J. Am. Chem. Soc. 2012, 134 (9), 4294. doi: 10.1021/ja210755h

    45. [45]

      (11) Kennedy, J. H.; Frese, K.W. J . Electrochem. Soc. 1978, 125 (5), 709. doi: 10.1149/1.2131532

    46. [46]

      (12) Mor, G. K.; Prakasam, H. E.; Varghese, O. K.; Shankar, K.; Grimes, C. A. Nano. Lett. 2007, 7 (8), 2356. doi: 10.1021/nl0710046

    47. [47]

      (13) Wei, Y. H.; Han, S. B.; Walker, D. A.; Warren, S. C.; Grzybowski, B. A. Chem. Sci. 2012, 3 (4), 1090. doi: 10.1039/c2sc00673a

    48. [48]

      (14) Zhang, J.; Liu, X. H.; Wang, L.W.; Yang, T. L.; Guo, X. Z.; Wu, S. H.; Wang, S. R.; Zhang, S. M. J. Phys. Chem. C 2011, 115 (13), 5352. doi: 10.1021/jp110421v

    49. [49]

      (15) Kay, A.; Cesar, I.; Grätzel, M. J. Am. Chem. Soc. 2006, 128 (49), 15714. doi: 10.1021/ja064380l

    50. [50]

      (16) Aroutiounian, V. M.; Arakelyan, V. M.; Shahnazaryan, G. E.; Stepanyan, G. M.; Turner, J. A.; Khaselev, O. Int. J. Hydrog. Energy 2002, 27 (1), 33. doi: 10.1016/S0360-3199(01)00085-4

    51. [51]

      (17) Jang, J. S.; Yoon, K. Y.; Xiao, X. Y.; Fan, F. R. F.; Bard, A. J. Chem. Mat. 2009, 21 (20), 4803. doi: 10.1021/cm901056c

    52. [52]

      (18) Hu, Y. S.; Kleiman-Shwarsctein, A.; Stucky, G. D.; McFarland, E.W. Chem. Commun. 2009, No. 19, 2652.

    53. [53]

      (19) Sartoretti, C. J.; Alexander, B. D.; Solarska, R.; Rutkowska, W. A.; Augustynski, J.; Cerny, R. J. Phys. Chem. B 2005, 109 (28), 13685. doi: 10.1021/jp051546g

    54. [54]

      (20) Zhu, L. P.; Bing, N. C.; Wang, L. L.; Jin, H. Y.; Liao, G. H.; Wang, L. J. Dalton Trans. 2012, 41 (10), 2959. doi: 10.1039/c2dt11822j

    55. [55]

      (21) Zhou, X. M.; Yang, H. C.; Wang, C. X.; Mao, X. B.; Wang, Y. S.; Yang, Y. L.; Liu, G. J. Phys. Chem. C 2010, 114 (40), 17051. doi: 10.1021/jp103816e

    56. [56]

      (22) Grosvenor, A. P.; Kobe, B. A.; Biesinger, M. C.; McIntyre, N. S. Surf. Interface Anal. 2004, 36 (12), 1564.

    57. [57]

      (23) Spray, R. L.; McDonald, K. J.; Choi, K. S. J. Phys. Chem. C 2011, 115 (8), 3497. doi: 10.1021/jp1093433

    58. [58]

      (24) Diaz, B.; Swiatowska, J.; Maurice, V.; Seyeux, A.; Harkonen, E.; Ritala, M.; Tervakangas, S.; Kolehmainen, J.; Marcus, P. Electrochim. Acta 2013, 90, 232. doi: 10.1016/j.electacta.2012.12.007

    59. [59]

      (25) Palma, R.; Laureyn, W.; Frederix, F.; Bonroy, K.; Pireaux, J. J.; Borghs, G.; Maes, G. Langmuir 2007, 23 (2), 443. doi: 10.1021/la061951e

    60. [60]

      (26) Cong, Y. Q.; Chen, M. M.; Xu, T.; Zhang, Y.; Wang, Q. Appl. Catal. B-Environ. 2014, 147, 733. doi: 10.1016/j.apcatb.2013.10.009

    61. [61]

      (27) Kleiman-Shwarsctein, A.; Hu, Y. S.; Forman, A. J.; Stucky, G. D.; McFarland, E.W. J. Phys. Chem. C 2008, 112 (40), 15900. doi: 10.1021/jp803775j

    62. [62]

      (28) Liu, H.; Wu, M.; Wu, H. J.; Sun, F. X.; Zheng, Y.; Li, W. Z. Acta Phys. -Chim. Sin. 2001, 17 (3), 286. [刘鸿, 吴鸣, 吴合进, 孙福侠, 郑云, 李文钊. 物理化学学报, 2001, 17 (3), 286.] doi: 10.3866/PKU.WHXB20010322

    63. [63]

      (29) Zhang, G. K.; Gao, Y. Y.; Zhang, Y. L.; Guo, Y. D. Environ. Sci. Technol. 2010, 44 (16), 6384. doi: 10.1021/es1011093

    64. [64]

      (30) Dhananjeyan, M. R.; Mielczarski, E.; Thampi, K. R.; Buffat, P.; Bensimon, M.; Kulik, A.; Mielczarski, J.; Kiwi, J. J. Phys. Chem. B 2001, 105 (48), 12046. doi: 10.1021/jp011339q

    65. [65]

      (31) Saleh, R.; Djaja, N. F. Superlattice Microst. 2014, 74, 217. doi: 10.1016/j.spmi.2014.06.013

    66. [66]

      (32) Li, G. T.; Wong, K. H.; Zhang, X.W.; Hu, C.; Yu, J. C.; Chan, R. C. Y.; Wong, P. K. Chemosphere 2009, 76 (9), 1185. doi: 10.1016/j.chemosphere.2009.06.027

    67. [67]

      (33) Li, G. T.; Song, H. Y.; Liu, B. T. Chin. J. Environ. Eng. 2012, 6 (10), 3388. [李国亭, 宋海燕, 刘秉涛. 环境工程学报, 2012, 6 (10), 3388.]

    68. [68]

      (34) Wu, J. F.; Li, Z.; Li, F. Superlattice Microst. 2013, 54, 146. doi: 10.1016/j.spmi.2012.11.008

    69. [69]

      (35) Wu, L.; Yu, J. C.; Fu, X. Z. J. Mol. Catal. A-Chem. 2006, 244 (1-2), 25. doi: 10.1016/j.molcata.2005.08.047 doi: 10.1016/j.molcata.2005.08.047


  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    3. [3]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    4. [4]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    5. [5]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    6. [6]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    7. [7]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    8. [8]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    9. [9]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    10. [10]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    11. [11]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    12. [12]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    13. [13]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    14. [14]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    15. [15]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    16. [16]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    17. [17]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    18. [18]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

Metrics
  • PDF Downloads(260)
  • Abstract views(1508)
  • HTML views(147)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return