Citation:
ZHANG Xiao-Qing, XU Yan YAN, YANG Chun-Hui, ZHANG Yan-Ping, YIN Yong-Xiang, SHANG Shu-Yong. In-situ Co-Precipitation of Ni-Mg-Al-LDH Catalytic Precursor on γ-Al2O3 for Dry Reforming of Methane: Synthesis and Evaluation[J]. Acta Physico-Chimica Sinica,
;2015, 31(5): 948-954.
doi:
10.3866/PKU.WHXB201503111
-
A series of novel catalysts derived from Ni-Mg-Al-LDHs (LDHs: layered double hydroxides) were synthesized in-situ on γ-Al2O3 and evaluated in CO2 reforming of CH4 (dry reforming of methane, DRM) reaction system. The catalytic precursors were decomposed and reduced by calcination and an atmospheric plasma technique, respectively. Activity and stability tests showed that the catalytic properties were greatly affected by the pretreatment method. The best catalytic performance was obtained with the catalyst that was directly reduced and decomposed using an atmospheric H2/Ar plasma jet. Compared with the pure LDH precursor, Ni- Mg-Al-LDHs/γ-Al2O3 had much greater mechanical strength, because of the γ-Al2O3 support. This feature extends the long lifetime of catalyst at high temperatures. X-ray diffraction (XRD), transmission electron microscopy (TEM), N2-adsorption-desorption, and thermogravimetry-differential thermal analysis (TG-DTA) results showed that the excellent catalytic performance was based on the small particle size and uniform dispersion of active Ni crystals, as well as the high mechanical strength and large specific surface area of the catalyst.
-
-
-
[1]
(1) Tao, X. M.; Bai, M. G.; Li, X. A.; Long, H. L.; Shang, S. Y.; Yin, Y. X.; Dai, X. Y. Prog. Energy Combust. Sci. 2011, 37, 113. doi: 10.1016/j.pecs.2010.05.001
-
[2]
(2) Brock, S. L.; Shimojo, T.; Suib, S. L.; Hayashi, Y.; Matsumoto, H. Research on Chemical Intermediates 2002, 28, 13. doi: 10.1163/156856702760129465
-
[3]
(3) Bradford, M. C. J.; Vannice, M. A. Catal. Rev.-Sci. Eng. 1999, 41, 1. doi: 10.1081/CR-100101948
-
[4]
(4) Liu, D.; Wang, Y.; Shi, D.; Jia, X.; Wang, X.; Borgna, A.; Lau, R.; Yang, Y. International Journal of Hydrogen Energy 2012, 37, 10135. doi: 10.1016/j.ijhydene.2012.03.158
-
[5]
(5) Son, I. H.; Lee, S. J.; Soon, A.; Roh, H. S.; Lee, H. Applied Catalysis B-Environmental 2013, 134, 103.
-
[6]
(6) Enger, B. C.; Lodeng, R.; Holmen, A. Applied Catalysis AGeneral 2008, 346, 1. doi: 10.1016/j.apcata.2008.05.018
-
[7]
(7) Lin, J. J.; Chan, Y. N.; Lan, Y. F. Materials 2010, 3, 2588. doi: 10.3390/ma3042588
-
[8]
(8) Guo, Z. L.; Huang, L. Q.; Chu, W.; Luo, S. Z. Acta Physico- Chimica Sinica 2014, 30, 723. [郭章龙, 黄丽琼, 储伟, 罗仕忠. 物理化学学报, 2014, 30, 723.] doi: 10.3866/PKU.WHXB201402242
-
[9]
(9) Zumreoglu-Karan, B.; Ay, A. N. Chem. Pap. 2012, 66, 1. doi: 10.2478/s11696-011-0100-8
-
[10]
(10) Tonelli, D.; Scavetta, E.; Giorgetti, M. Anal. Bioanal. Chem. 2013, 405, 603. doi: 10.1007/s00216-012-6586-2
-
[11]
(11) h, K. H.; Lim, T. T.; Dong, Z. Water Res. 2008, 42, 1343. doi: 10.1016/j.watres.2007.10.043
-
[12]
(12) Takehira, K.; Shishido, T.; Wang, P.; Kosaka, T.; Takaki, K. Journal of Catalysis 2004, 221, 43. doi: 10.1016/j.jcat.2003.07.001
-
[13]
(13) Bhattacharyya, A.; Chang, V.W.; Schumacher, D. J. Applied Clay Science 1998, 13, 317. doi: 10.1016/S0169-1317(98)00030-1
-
[14]
(14) Tsyganok, A. I.; Tsunoda, T.; Hamakawa, S.; Suzuki, K.; Takehira, K.; Hayakawa, T. Journal of Catalysis 2003, 213, 191. doi: 10.1016/S0021-9517(02)00047-7
-
[15]
(15) Long, H.; Xu, Y.; Zhang, X.; Hu, S.; Shang, S.; Yin, Y.; Dai, X. Journal of Energy Chemistry 2013, 22, 733. doi: 10.1016/S2095-4956(13)60097-2
-
[16]
(16) Gennequin, C.; Safariamin, M.; Siffert, S.; Aboukais, A.; Abi- Aad, E. Catalysis Today 2011, 176, 139. doi: 10.1016/j.cattod.2011.01.029
-
[17]
(17) Wang, Q.; Ren, W.; Yuan, X.; Mu, R.; Song, Z.; Wang, X. International Journal of Hydrogen Energy 2012, 37, 11488. doi: 10.1016/j.ijhydene.2012.05.010
-
[18]
(18) nzalez, A. R.; Asencios, Y. J. O.; Assaf, E. M.; Assaf, J. M. Appl. Surf. Sci. 2013, 280, 876. doi: 10.1016/j.apsusc.2013.05.082
-
[19]
(19) Wang, J.; Fan, G. L.; Wang, H.; Li, F. Ind. Eng. Chem. Res. 2011, 50, 13717. doi: 10.1021/ie2015087
-
[20]
(20) Gabrovska, M.; Edreva-Kardjieva, R.; Crisan, D.; Tzvetkov, P.; Shopska, M.; Shtereva, I. React. Kinet. Mech. Catal. 2012, 105, 79. doi: 10.1007/s11144-011-0378-0
-
[21]
(21) Wang, Q.; Zhang, X.; Zhu, J.; Guo, Z.; O'Hare, D. Chemical Communications 2012, 48, 7450. doi: 10.1039/c2cc32708b
-
[22]
(22) Liu, Z.; Zhou, J.; Cao, K.; Yang, W.; Gao, H.; Wang, Y.; Li, H. Applied Catalysis B-Environmental 2012, 125, 324. doi: 10.1016/j.apcatb.2012.06.003
-
[23]
(23) Kathiraser, Y.; Thitsartarn, W.; Sutthiumporn, K.; Kawi, S. Journal of Physical Chemistry C 2013, 117, 8120. doi: 10.1021/jp401855x
-
[24]
(24) Hou, Z. Y.; Yashima, T. Applied Catalysis A-General 2004, 261, 205. doi: 10.1016/j.apcata.2003.11.002
-
[25]
(25) Nazemi, M. K.; Sheibani, S.; Rashchi, F.; nzalez-DelaCruz, V. M.; Caballero, A. Advanced Powder Technology 2012, 23, 833. doi: 10.1016/j.apt.2011.11.004
-
[26]
(26) Lopez-Fonseca, R.; Jimenez- nzalez, C.; de Rivas, B.; Gutierrez-Ortiz, J. I. Applied Catalysis A-General 2012, 437, 53.
-
[27]
(27) Zhang, Y. P.; Zhu, X. L.; Pan, Y. X.; Liu, C. J. Chinese Journal of Catalysis 2008, 29, 1058. [张月萍, 祝新利, 潘云翔, 刘昌俊. 催化学报, 2008, 29, 1058.]
-
[28]
(28) Li, M. Z.; Fan, G. L.; Qin, H.; Li, F. Ind. Eng. Chem. Res. 2012, 51, 11892. doi: 10.1021/ie3008659
-
[1]
-
-
-
[1]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[2]
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
-
[3]
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
-
[4]
Shitao Fu , Jianming Zhang , Cancan Cao , Zhihui Wang , Chaoran Qin , Jian Zhang , Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059
-
[5]
Bo YANG , Gongxuan LÜ , Jiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063
-
[6]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[7]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[8]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[9]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[10]
Yaping Li , Sai An , Aiqing Cao , Shilong Li , Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185
-
[11]
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
-
[12]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[13]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[14]
Renqing Lü , Shutao Wang , Fang Wang , Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119
-
[15]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[16]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[17]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[18]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[19]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[20]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[1]
Metrics
- PDF Downloads(332)
- Abstract views(596)
- HTML views(47)