Citation: TANG Qing-Long, ZHANG Peng, LIU Hai-Feng, YAO Ming-Fa. Quantitative Measurements of Soot Volume Fractions in Diesel Engine Using Laser-Induced Incandescence Method[J]. Acta Physico-Chimica Sinica, ;2015, 31(5): 980-988. doi: 10.3866/PKU.WHXB201503101 shu

Quantitative Measurements of Soot Volume Fractions in Diesel Engine Using Laser-Induced Incandescence Method

  • Received Date: 1 December 2015
    Available Online: 10 March 2015

    Fund Project: 国家自然科学基金(51206120)资助项目 (51206120)

  • Laser-induced incandescence (LII) is an optical diagnostic method used to measure the soot volume fraction in a flame. In this paper, the principle of LII and the calibration methods normally used are introduced. Based on two-color LII theory, a quantitative test system for determining the in-cylinder soot volume fraction was established. A dual imaging setup was used, which can achieve multipoint calibration and full field-of-view quantification of soot in a diesel engine chamber. An investigation was carried out on an optical diesel engine with the conditions 1200 r·min-1 and 21 mg fuel injection per cycle, with various injection pressures (60, 100, and 140 MPa). The results show that the natural soot incandescence emerged after the peak rate of combustion heat release. With increasing injection pressure, the duration of natural soot incandescence shortened and the natural soot luminosity decreased. The range of soot volume fractions in the test zone was (0-50)×10-6. The mean soot volume fraction at the initial soot stage, soot peak, and soot oxidation stage were in the ranges (5-9)×10-6, (15-20)×10-6, and (14-16)×10-6, respectively, depending on the injection pressure. With increasing injection pressure, the distribution area of the soot particles increased, the mean soot volume fraction decreased, and the distribution of the soot volume fraction in space tended to be more uniform in combustion flames.

  • 加载中
    1. [1]

      (1) Wang, H. Proc. Combust. Inst. 2011, 33, 41. doi: 10.1016/j.proci.2010.09.009

    2. [2]

      (2) Tree, D. R.; Svensson, K. I. Prog. Energy Combust. Sci. 2007, 33, 272. doi: 10.1016/j.pecs.2006.03.002

    3. [3]

      (3) Reitz, R. D. Combust. Flame 2013, 160, 1. doi: 10.1016/j.combustflame.2012.11.002

    4. [4]

      (4) Liu, H. F.; Huo, M.; Liu, Y.; Wang, X.; Wang, H.; Yao, M. F.; Lee, C. F. Fuel 2014, 133, 317.

    5. [5]

      (5) Pang, B.; Xie, M. Z.; Jia, M.; Liu, Y. D. Acta Phys. -Chim. Sin. 2013, 29, 2523. [庞斌, 解茂昭, 贾明, 刘耀东. 物理化学学报, 2013, 29, 2523.] doi: 10.3866/PKU.WHXB201310161

    6. [6]

      (6) Zhao, H.; Ladommatos, N. Prog. Energy. Combust. Sci. 1998, 24, 221. doi: 10.1016/S0360-1285(97)00033-6

    7. [7]

      (7) Melton, L. A. Appl. Opt. 1984, 23, 2201. doi: 10.1364/AO.23.002201

    8. [8]

      (8) Bobba, M. K.; Musculus, M. P. B. Combust. Flame 2012, 159, 832. doi: 10.1016/j.combustflame.2011.07.017

    9. [9]

      (9) Menkiel, B.; Donkerbroek, A.; Uitz, R.; Cracknell, R.; Ganippa, L. Fuel 2014, 118, 406. doi: 10.1016/j.fuel.2013.10.074

    10. [10]

      (10) Aronsson, U.; Chartier, C.; Andersson, O.; Johansson, B.; Sjöholm, J.; Wellander, R.; Richter, M.; Alden, M.; Miles, P. C. Analysis of EGR Effects on the Soot Distribution in a Heavy Duty Diesel Engine using Time-Resolved Laser Induced Incandescence. SAE Paper 2010-01-2104, 2010.

    11. [11]

      (11) Dec, J. E.; Zur Loye, A. O.; Siebers, D. L. Soot Distribution in a D.I. Diesel Engine Using 2-D Laser-Induced Incandescence Imaging. SAE Tech. Pap. Ser. 1991, 910224.

    12. [12]

      (12) Dec, J. E. A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging. SAE Tech. Pap. Ser. 1997, 970873.

    13. [13]

      (13) Wiltafsky, G.; Stolz, W.; Köhler, J.; Espey, C. The Quantification of Laser-Induced Incandescence (LII) for Planar Time Resolved Measurements of the Soot Volume Fraction in a Combusting Diesel Jet. SAE Tech. Pap. Ser. 1996, 961200.

    14. [14]

      (14) Pinson, J. A.; Ni, T.; Litzinger, T. A. Quantitative Imaging Study of the Effects of Intake Air Temperature on Soot Evolution in an Optically-Accessible D.I. Diesel Engine. SAE Tech. Pap. Ser. 1994, 942044.

    15. [15]

      (15) Ni, T.; Pinson, J. A.; Gupta, S.; Santoro, R. J. Appl. Opt. 1995, 34, 7083. doi: 10.1364/AO.34.007083

    16. [16]

      (16) Tran, M. K.; Rankin, D. D.; Pham, T. K. Combust. Flame 2012, 159, 2181. doi: 10.1016/j.combustflame.2012.01.008

    17. [17]

      (17) Cruz, A. P.; Dumas, J. P; Bruneaux, G. Two-Dimensional In- Cylinder Soot Volume Fractions in Diesel Low Temperature Combustion Mode. SAE Tech. Pap. Ser. 2011, 2011-01-1390.

    18. [18]

      (18) Francqueville, L.D.; Bruneaux, G.; Thirouard, B. Soot Volume Fraction Measurements in a Gasoline Direct Injection Engine by Combined Laser Induced Incandescence and Laser Extinction Method. SAE Tech. Pap. Ser. 2010, 2010-01-0346.

    19. [19]

      (19) Zheng, L.; Ma, X.; Wang, Z.; Wang, J. X. Fuel 2015, 139, 365. doi: 10.1016/j.fuel.2014.09.009

    20. [20]

      (20) Snelling, D. R.; Smallwood, G. J.; Gulder, O. L. Absolute Intensity Measurements in Laser Induced Incandescence. U. S. Patent 6 154 277, 2000.

    21. [21]

      (21) Snelling, D. R.; Smallwood, G. J.; Liu, F. S. Appl. Opt. 2005, 44, 6773. doi: 10.1364/AO.44.006773

    22. [22]

      (22) Yue, Z. Y.; Zhang, P.; Chen, B. L.; Liu, H. F.; Zheng, Z. Q.; Yao, M. F. Journal of Combustion Science and Technology 2013, 19, 434. [岳宗宇, 张鹏, 陈贝凌, 刘海峰, 郑尊清, 尧命发. 燃烧科学与技术, 2013, 19, 434.]

    23. [23]

      (23) Zhang, P.; Liu, H. F.; Chen, B. L.; Tang, Q. L.; Yao, M. F. Acta Phys. -Chim. Sin. 2015, 31, 32. [张鹏, 刘海峰, 陈贝凌, 唐青龙, 尧命发. 物理化学学报, 2015, 31, 32.] doi: 10.3866/PKU.WHXB201411051

    24. [24]

      (24) Schulz, C.; Kock, B. F.; Hofmann, M.; Michelsen, H.; Will, S.; Bougie, B.; Suntz, R.; Smallwood, G. Appl. Phys. B 2006, 83, 333.

    25. [25]

      (25) Liu, F.; He, X.; Ma, X.; Zhang, Q.; Thomson, M. J.; Guo, H.; Smallwood, G. J.; Shuai, S.; Wang, J. Combust. Flame 2011, 158, 547. doi: 10.1016/j.combustflame.2010.10.005

    26. [26]

      (26) He, X.; Ma, X.; Wang, J. X. Journal of Combustion Science and Technology 2009, 15 (4), 344. [何旭, 马骁, 王建昕. 燃烧科学与技术, 2009, 15 (4), 344.]

    27. [27]

      (27) Boiarciuc, A.; Foucher, F.; Rousselle, C. M. Appl. Phys. B 2006, 83, 413. doi: 10.1007/s00340-006-2236-8

    28. [28]

      (28) Menkiel, B.; Donkerbroek, A.; Uitz, R. Combust. Flame 2012, 159, 2985. doi: 10.1016/j.combustflame.2012.03.008

    29. [29]

      (29) Musculus, M. P. B.; Singh, S.; Reitz, R. D. Combust. Flame 2008, 153, 216. doi: 10.1016/j.combustflame.2007.10.023

    30. [30]

      (30) Zhang, J.; Jing, W.; Roberts, W. L.; Fang, T. G. Appl. Energy 2013, 107, 52. doi: 10.1016/j.apenergy.2013.02.023

    31. [31]

      (31) Singh, S.; Reitz, R. D.; Musculus, M. P. B. 2-Color Thermometry Experiments and High-Speed Imaging of Multi- Mode Diesel Engine Combustion. SAE Tech. Pap. Ser. 2005, 2005-01-3842.

    32. [32]

      (32) Mueller, C. J.; Martin, G. C. Effects of Oxygenated Compounds on Combustion and Soot Evolution in a DI Diesel Engine: Broadband Natural Luminosity Imaging. SAE Tech. Pap. Ser. 2002, 2002-01-1631.


  • 加载中
    1. [1]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    2. [2]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    3. [3]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    4. [4]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    5. [5]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    6. [6]

      Lei Shu Zimin Duan Yushen Kang Zijian Zhao Hong Wang Lihua Zhu Hui Xiong Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084

    7. [7]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    8. [8]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    9. [9]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    10. [10]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    11. [11]

      Ling Bai Limin Lu Xiaoqiang Wang Dongping Wu Yansha Gao . Exploration and Practice of Teaching Reforms in “Quantitative Analytical Chemistry” under the Perspective of New Agricultural Science. University Chemistry, 2024, 39(3): 158-166. doi: 10.3866/PKU.DXHX202308101

    12. [12]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    13. [13]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    14. [14]

      Weitai Wu Laiying Zhang Yuan Chun Liang Qiao Bin Ren . Course Design of Chemical Measurement Experiments in Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 64-68. doi: 10.12461/PKU.DXHX202409031

    15. [15]

      Laiying Zhang Weitai Wu Yiru Wang Shunliu Deng Zhaobin Chen Jiajia Chen Bin Ren . Practices for Improving the Course of Chemical Measurement Experiments in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 107-112. doi: 10.12461/PKU.DXHX202409032

    16. [16]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    19. [19]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    20. [20]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

Metrics
  • PDF Downloads(253)
  • Abstract views(421)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return