Citation: LIANG Ju, LAI Dan-Yu, WU Wen-Lan, LI Guo-Zhi, LI Jun-Bo, FANG Cai-Lin. Self-Assembly and Acid-Responsive Behavior of Three Amphiphilic Peptides[J]. Acta Physico-Chimica Sinica, ;2015, 31(4): 722-728. doi: 10.3866/PKU.WHXB201503031 shu

Self-Assembly and Acid-Responsive Behavior of Three Amphiphilic Peptides

  • Received Date: 16 October 2014
    Available Online: 3 March 2015

    Fund Project: 国家自然科学基金(51403055)资助项目 (51403055)

  • Three amphiphilic peptides containing KKGRGDS as hydrophilic heads and VVVVVV, C12, and FAFAFA as hydrophobic tails (VVVVVVKKGRGDS (AP1), C12KKGRGDS (AP2), FAFAFAKKGRGDS (AP3)) were designed and prepared using the standard solid-phase peptide synthesis (SPPS) technique. Three peptides assembled into spherical micelles under neutral conditions (pH 7.0) with a size of ~30 nm determined by transmission electron microscope (TEM). Dynamic light scattering (DLS) tests showed that their size distributions were uniform and narrow. In dilute hydrochloric acid (pH 5.0), peptide AP1 presented a sharp aciddependent demicellization transition, with no assembled particles found by TEM and no DLS peak in the range 1-1000 nm. However, the micellar structures of the amphiphilic peptides AP2 and AP3 did not disappear at pH 5.0. TEM results showed that AP2 assembly appeared through aggregation and the shape of AP3 micellar particles became non-spherical or irregular. AP2 assembly at pH 5.0 showed a multiple peak distribution and AP3 assembly showed a broad peak distribution in DLS, consistent with the TEM results. The changes in secondary structures of amphiphilic peptides AP1, AP2, and AP3 at pH 7.0 and 5.0 were confirmed by circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy. We then selected curcumin as a model drug to investigate the drug-loading capacity and in vitro release behavior of peptide AP1 micelles. As a result, AP1 is expected to comprise an ideal acid-responsive drug carrier for the intelligent delivery of anticancer drugs. The differences between AP1, AP2, and AP3 assembly behaviors in neutral and acidic conditions provide a novel and effective approach for regulating self-assembly of peptides. AP1 is expected to offer an ideal pH-responsive functional material.

  • 加载中
    1. [1]

      (1) Mao, X. B.; Wang, C. X.; Liu, L.; Ma, X. J.; Niu, L.; Yang, Y. L.; Wang, C. Acta Phys. -Chim. Sin. 2010, 26 (4), 850. [毛晓波, 王晨轩, 刘磊, 马晓晶, 牛琳, 杨延莲, 王琛. 物理化学学报, 2010, 26 (4), 850.] doi: 10.3866/PKU.WHXB20100440

    2. [2]

      (2) Chen, C.; Chu, Y. Q.; Dai, X. H.; Fang, X.; Ding, C. F. Acta Phys. -Chim. Sin. 2013, 29 (6), 1336. [陈琛, 储艳秋, 戴新华, 方向, 丁传凡. 物理化学学报, 2013, 29 (6), 1336.] doi: 10.3866/PKU.WHXB201303155

    3. [3]

      (3) Zhou, C. C.; Wang, M. Z.; Zou, K. D.; Chen, J.; Zhu, Y. Q.; Du, J. Z. ACS Macro Letters 2013, 2, 1021. doi: 10.1021/mz400480z

    4. [4]

      (4) Chen, J.; Wang, F. Y. K.; Liu, Q. M.; Du, J. Z. Chemical Communications 2014, 50, 14482.

    5. [5]

      (5) Kunitake, T. Angew. Chem. Int. Edit. Engl. 1992, 31 (6), 709.

    6. [6]

      (6) Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Science 2001, 294 (5547), 1684. doi: 10.1126/science.1063187

    7. [7]

      (7) Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Proc. Natl. Acad. Sci. U. S. A. 2002, 99 (8), 5133. doi: 10.1073/pnas.072699999

    8. [8]

      (8) Cui, H. G.; Webber, M. J.; Stupp, S. I. Biopolymers 2010, 94 (1), 1. doi: 10.1002/bip.21328

    9. [9]

      (9) Vauthey, S.; Santoso, S.; ng, H. Y.; Watson, N.; Zhang, S. G. Proc. Natl. Acad. Sci. U. S. A. 2002, 99 (8), 5355.

    10. [10]

      (10) Wiradharma, N.; Tong, Y.W.; Yang, Y. Y. Macromol. Rapid Commun. 2010, 31, 1212. doi: 10.1002/marc.v31:13

    11. [11]

      (11) Wang, H. Y.; Chen, J. X.; Sun, Y. X.; Deng, J. Z.; Li, C.; Zhang, X. Z.; Zhuo, R. X. J. Control Release 2011, 155 (1), 26. doi: 10.1016/j.jconrel.2010.12.009

    12. [12]

      (12) Xu, X. D.; Jin, Y.; Liu, Y.; Zhang, X. Z.; Zhuo, R. X. Colloids Surf. B Biointerfaces 2010, 81 (1), 329. doi: 10.1016/j.colsurfb.2010.07.027

    13. [13]

      (13) Zhang, S. G. Nat. Biotechnol. 2003, 21, 1171.

    14. [14]

      (14) Lee, E. S.; Gao, Z.; Kim, D.; Park, K., Kwon, I. C.; Bae, Y. H. J. Control Release 2008, 129 (3), 228. doi: 10.1016/j.jconrel.2008.04.024

    15. [15]

      (15) Xu, X. D.; Lin, B. B.; Feng, J.; Wang, Y.; Cheng, S. X.; Zhang, X. Z.; Zhuo, R. X. Macromol. Rapid Commun. 2012, 33 (5), 426. doi: 10.1002/marc.201100689

    16. [16]

      (16) Wiranharma, N.; Tong, Y.W.; Yang, Y. Y. Biomaterials 2009, 30 (17), 3100. doi: 10.1016/j.biomaterials.2009.03.006

    17. [17]

      (17) Chang, C.; Wei, H.; Feng, J.; Wang, Z. C.; Wu, X. J.; Wu, D. Q.; Cheng, S. X.; Zhang, X. Z.; Zhuo, R. X. Macromolecules 2009, 42 (13), 4838. doi: 10.1021/ma900492v

    18. [18]

      (18) Guo, X. D.; Tangiono, F.; Wiranharma, N.; Khor, D.; Tan, C. G.; Khan, M.; Qian, Y.; Yang, Y. Y. Biomaterials 2008, 29 (36), 4838. doi: 10.1016/j.biomaterials.2008.07.053

    19. [19]

      (19) Liang, J.; Wu, W. L.; Xu, X. D.; Zhuo, R. X.; Zhang, X. Z. Colloids and Surfaces B: Biointerfaces 2014, 114, 398. doi: 10.1016/j.colsurfb.2013.10.037

    20. [20]

      (20) Li, Q.; Li, M.; Jin, Y. G.; Du, L. N.; Su, C.; Dong, J. X. J. Int. Pharm. Res. 2013, 40 (2), 233.

    21. [21]

      (21) Chen, D.W.; Yan, L.; Qiao, M. X.; Hu, H. Y.; Zhao, X. L.; Chen, X.; Deng, Y. H. Acta Pharmaceutica Sinica 2008, 43 (10), 1066.


  • 加载中
    1. [1]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    2. [2]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    3. [3]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    4. [4]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    5. [5]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    6. [6]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    7. [7]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    8. [8]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    9. [9]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    10. [10]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    11. [11]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    12. [12]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    13. [13]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    14. [14]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    15. [15]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    16. [16]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    17. [17]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    18. [18]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    19. [19]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    20. [20]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

Metrics
  • PDF Downloads(279)
  • Abstract views(496)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return