Citation: REN Qing-Hua, SHEN Xiao-Yan. Reaction Mechanism for the Iron-Catalyzed Biaryl Cross-Coupling of Aryl Grignard Reagents[J]. Acta Physico-Chimica Sinica, ;2015, 31(5): 852-858. doi: 10.3866/PKU.WHXB201503026 shu

Reaction Mechanism for the Iron-Catalyzed Biaryl Cross-Coupling of Aryl Grignard Reagents

  • Received Date: 25 December 2014
    Available Online: 2 March 2015

    Fund Project: 项目(B.58-B111-12-101, B.58-B111-12-103)资助 (B.58-B111-12-101, B.58-B111-12-103)

  • Mechanisms for the [Fe(MgBr)2] catalyzed cross-coupling reaction between ortho-chlorostyrene and phenylmagnesium bromide to form biaryl were studied using density functional theory (DFT) calculations. We investigated two mechanisms. Cycle A included three basic steps: (I) oxidation of [Fe(MgBr)2] to obtain [Ar- Fe(MgBr)], (II) addition to yield [Ar-(phenyl)-Fe(MgBr)2], and (III) reductive elimination to return to [Fe(MgBr)2]. Cycle B did not form [Ar-Fe(MgBr)]. In the first step, phenylmagnesium bromide attacks the intermediate of the oxidative addition directly before [Cl-Mg-Br] dissociates to form [Ar-Fe(MgBr)]. The catalytic Cycle B is favored over the catalytic Cycle Awhen considering the solvent effect. The rate-limiting step in the overall catalytic cycle for both Cycle A and Cycle B is the reductive elimination of [Ar-(phenyl)-Fe(MgBr)2] to regenerate the catalyst [Fe(MgBr)2], where the Gibbs free energy in solvent tetrahydrofuran (THF), ΔGsol, is 82.98 kJ ·mol-1, as determined using the conductor polarized continuum model (CPCM) method.

  • 加载中
    1. [1]

      (1) Negishi, E. Accounts Chem. Res. 1982, 15, 340. doi: 10.1021/ar00083a001

    2. [2]

      (2) Yang, Y.; Oldenhuis, N. J.; Buchwald, S. L. Angew. Chem. Int. Edit. 2013, 125, 643. doi: 10.1002/ange.201207750

    3. [3]

      (3) Blangetti, M.; Rosso, H.; Prandi, C.; Dea stino, A.; Venturello, P. Molecules 2013, 18, 1188. doi: 10.3390/molecules18011188

    4. [4]

      (4) Miyaura, N.; Suzuki, A. J. Chem. Soc. Chem. Commun. 1979, 19, 866. doi: 10.1039/C39790000866

    5. [5]

      (5) Heck, R. F.; Nolley, J. P. J. Org. Chem. 1972, 37, 2320. doi: 10.1021/jo00979a024

    6. [6]

      (6) Cabri, W.; Candiani, I. Accounts Chem. Res. 1995, 28, 2. doi: 10.1021/ar00049a001

    7. [7]

      (7) Milstein, D.; Stille, J. K. J. Am. Chem. Soc. 1978, 100, 3636. doi: 10.1021/ja00479a077

    8. [8]

      (8) Yabe, Y.; Maegawa, T.; Monguchi, Y.; Sajiki, H. Tetrahedron 2010, 66, 8654. doi: 10.1016/j.tet.2010.09.027

    9. [9]

      (9) Tamao, K.; Sumitani, K.; Kumada, M. J. Am. Chem. Soc. 1972, 94, 4374. doi: 10.1021/ja00767a075

    10. [10]

      (10) Yang, L. M.; Huang, L. F.; Luh, T. Y. Org. Lett. 2004, 6, 1461. doi: 10.1021/ol049686g

    11. [11]

      (11) Vechorkin, O.; Proust, V.; Hu, X. J. Am. Chem. Soc. 2009, 131, 9756. doi: 10.1021/ja9027378

    12. [12]

      (12) Torssell, K. B. Natural Product Chemistry: a Mechanistic and Biosynthetic Approach to Secondary Metabolism; JohnWiley & Sons: New Jersey, 1983; p 401.

    13. [13]

      (13) Hassan, J.; Sevignon, M.; zzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359. doi: 10.1021/cr000664r

    14. [14]

      (14) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. doi: 10.1021/cr00039a007

    15. [15]

      (15) Bringmann, G.; Mortimer, A. J. P.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. Angew. Chem. Int. Edit. 2005, 44, 5384.

    16. [16]

      (16) Kirsch, P.; Bremer, M. Angew. Chem. Int. Edit. 2000, 39, 4216.

    17. [17]

      (17) Bauer, E. B. Curr. Org. Chem. 2008, 12, 1341. doi: 10.2174/ 138527208786241556

    18. [18]

      (18) Bolm, C.; Legros, J.; Paih, J. L.; Zani, L. Chem. Rev. 2004, 104, 6217. doi: 10.1021/cr040664h

    19. [19]

      (19) Czaplik, W. M.; Mayer, M.; Cvengros, J.; vonWangelin, A. J. ChemSusChem 2009, 2, 396. doi: 10.1002/cssc.v2:5

    20. [20]

      (20) Sherry, B. D.; Furstner, A. Accounts Chem. Res. 2008, 41, 1500. doi: 10.1021/ar800039x

    21. [21]

      (21) Furstner, A.; Leitner, A. Angew. Chem. Int. Edit. 2002, 41, 609.

    22. [22]

      (22) Furstner, A.; Leitner, A.; Mendez, M.; Krause, H. J. Am. Chem. Soc. 2002, 124, 13856. doi: 10.1021/ja027190t

    23. [23]

      (23) Correa, A.; Mancheno, O. G.; Bolm, C. Chem. Soc. Rev. 2008, 37, 1108. doi: 10.1039/b801794h

    24. [24]

      (24) Furstner, A.; Martin, R. Chem. Lett. 2005, 34, 624. doi: 10.1246/cl.2005.624

    25. [25]

      (25) Furstner, A.; Martin, R.; Krause, H.; Seidel, G.; ddard, R.; Lehmann, C.W. J. Am. Chem. Soc. 2008, 130, 8773. doi: 10.1021/ja801466t

    26. [26]

      (26) Noda, D.; Sunada, Y.; Hatakeyama, T.; Nakamura, M.; Nagashima, H. J. Am. Chem. Soc. 2009, 131, 6078. doi: 10.1021/ja901262g

    27. [27]

      (27) Scheiper, B.; Bonnekessel, M.; Krause, H.; Furstner, A. J. Org. Chem. 2004, 69, 3943. doi: 10.1021/jo0498866

    28. [28]

      (28) Molander, G. A.; Rahn, B. J.; Shubert, D. C. Tetrahedron Lett. 1983, 24, 5449. doi: 10.1016/S0040-4039(00)94109-1

    29. [29]

      (29) Quintin, J.; Franck, X.; Hocquemiller, R.; Figadere, B. Tetrahedron Lett. 2002, 43, 3547. doi: 10.1016/S0040-4039(02)00568-3

    30. [30]

      (30) Hocek, M.; Dvorakova, H. J. Org. Chem. 2003, 68, 5773. doi: 10.1021/jo034351i

    31. [31]

      (31) Hatakeyama, T.; Nakamura, M. J. Am. Chem. Soc. 2007, 129, 9844. doi: 10.1021/ja073084l

    32. [32]

      (32) Hatakeyama, T.; Hashimoto, S.; Ishizuka, K.; Nakamura, M. J. Am. Chem. Soc. 2009, 131, 11949. doi: 10.1021/ja9039289

    33. [33]

      (33) Mayer, M.; Welther, A.; vonWangelin, A. J. ChemCatChem 2011, 3, 1567. doi: 10.1002/cctc.v3.10

    34. [34]

      (34) Clayton, H. S.; Moss, J. R.; Dry, M. E. J. Organomet. Chem. 2003, 688, 181. doi: 10.1016/j.jorganchem.2003.08.044

    35. [35]

      (35) Knolker, H. J. Chem. Soc. Rev. 1999, 28, 151. doi: 10.1039/a705401g

    36. [36]

      (36) Gulak, S.; vonWangelin, A. J. Angew. Chem. Int. Edit. 2012, 51, 1357. doi: 10.1002/anie.201106110

    37. [37]

      (37) Smith, R. S.; Kochi, J. K. J. Org. Chem. 1976, 41, 502. doi: 10.1021/jo00865a019

    38. [38]

      (38) Bogdanovic, B.; Schwickardi, M. Angew. Chem. Int. Edit. 2000, 39, 4610.

    39. [39]

      (39) Kleimark, J.; Hedstrom A.; Larsson P. F.; Johansson, C.; Norrby, P. ChemCatChem 2009, 1, 152. doi: 10.1002/cctc.v1:1

    40. [40]

      (40) Ren, Q.; Guan, S.; Jiang, F.; Fang, J. J. Phys. Chem. A 2013, 117, 756. doi: 10.1021/jp3045498

    41. [41]

      (41) Czaplik, W. M.; Mayer, M.; vonWangelin, A. J. ChemCatChem 2011, 3, 135. doi: 10.1002/cctc.201000276

    42. [42]

      (42) Mo, Z.; Zhang, Q.; Deng, L. Organometallics 2012, 31, 6518. doi: 10.1021/om300722g

    43. [43]

      (43) Becke, A. D. Phys. Rev. A 1988, 38, 3098. doi: 10.1103/PhysRevA.38.3098

    44. [44]

      (44) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913

    45. [45]

      (45) Hertwig, R. H.; Koch, W. Chem. Phys. Lett. 1997, 268, 345. doi: 10.1016/S0009-2614(97)00207-8

    46. [46]

      (46) Lee, C. T.; Yang, W. T.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785

    47. [47]

      (47) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623. doi: 10.1021/j100096a001

    48. [48]

      (48) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200. doi: 10.1139/p80-159

    49. [49]

      (49) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision C.02; Gaussian Inc.; Wallingford, CT, 2004.

    50. [50]

      (50) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650. doi: 10.1063/1.438955

    51. [51]

      (51) McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639. doi: 10.1063/1.438980

    52. [52]

      (52) Andrae, D.; Haussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor. Chim. Acta. 1990, 77, 123. doi: 10.1007/BF01114537

    53. [53]

      (53) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669. doi: 10.1002/jcc.10189

    54. [54]

      (54) Castejon, H.; Wiberg, K. B. J. Am. Chem. Soc. 1999, 121, 2139. doi: 10.1021/ja983736t

    55. [55]

      (55) Perng, B. C.; Newton, M. D.; Raineri, F. O.; Friedman, H. L. J. Chem. Phys. 1996, 104, 7153 and 7177.

    56. [56]

      (56) Najafi, M.; Zahedi, M.; Klein, E. Comput. Theor. Chem. 2011, 978, 16. doi: 10.1016/j.comptc.2011.09.014

    57. [57]

      (57) Schubert, G.; Papai, I. J. Am. Chem. Soc. 2003, 125, 14847. doi: 10.1021/ja035791u

    58. [58]

      (58) Belelli, P. G.; Damiani, D. E.; Castellani, N. J. Chem. Phys. Lett. 2005, 401, 515. doi: 10.1016/j.cplett.2004.11.089

    59. [59]

      (59) Feng, J.; Ren, Q. H. Acta. Phys. -Chim. Sin. 2014, 30, 821. [蒋峰, 任清华. 物理化学学报, 2014, 30, 821.]

    60. [60]

      (60) Nova, A.; Ujaque, G.; Maseras, F.; Liedos, A.; Espinet, P. J. Am. Chem. Soc. 2006, 128, 14571. doi: 10.1021/ja0635736


  • 加载中
    1. [1]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    2. [2]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    3. [3]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    4. [4]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    5. [5]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    6. [6]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    7. [7]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    8. [8]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    9. [9]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    10. [10]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    11. [11]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    12. [12]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    13. [13]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    14. [14]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    15. [15]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    16. [16]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    17. [17]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    18. [18]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    19. [19]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    20. [20]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

Metrics
  • PDF Downloads(315)
  • Abstract views(1004)
  • HTML views(118)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return