Citation: REN Qing-Hua, SHEN Xiao-Yan. Reaction Mechanism for the Iron-Catalyzed Biaryl Cross-Coupling of Aryl Grignard Reagents[J]. Acta Physico-Chimica Sinica, ;2015, 31(5): 852-858. doi: 10.3866/PKU.WHXB201503026
-
Mechanisms for the [Fe(MgBr)2] catalyzed cross-coupling reaction between ortho-chlorostyrene and phenylmagnesium bromide to form biaryl were studied using density functional theory (DFT) calculations. We investigated two mechanisms. Cycle A included three basic steps: (I) oxidation of [Fe(MgBr)2] to obtain [Ar- Fe(MgBr)], (II) addition to yield [Ar-(phenyl)-Fe(MgBr)2], and (III) reductive elimination to return to [Fe(MgBr)2]. Cycle B did not form [Ar-Fe(MgBr)]. In the first step, phenylmagnesium bromide attacks the intermediate of the oxidative addition directly before [Cl-Mg-Br] dissociates to form [Ar-Fe(MgBr)]. The catalytic Cycle B is favored over the catalytic Cycle Awhen considering the solvent effect. The rate-limiting step in the overall catalytic cycle for both Cycle A and Cycle B is the reductive elimination of [Ar-(phenyl)-Fe(MgBr)2] to regenerate the catalyst [Fe(MgBr)2], where the Gibbs free energy in solvent tetrahydrofuran (THF), ΔGsol, is 82.98 kJ ·mol-1, as determined using the conductor polarized continuum model (CPCM) method.
-
-
[1]
(1) Negishi, E. Accounts Chem. Res. 1982, 15, 340. doi: 10.1021/ar00083a001
-
[2]
(2) Yang, Y.; Oldenhuis, N. J.; Buchwald, S. L. Angew. Chem. Int. Edit. 2013, 125, 643. doi: 10.1002/ange.201207750
-
[3]
(3) Blangetti, M.; Rosso, H.; Prandi, C.; Dea stino, A.; Venturello, P. Molecules 2013, 18, 1188. doi: 10.3390/molecules18011188
-
[4]
(4) Miyaura, N.; Suzuki, A. J. Chem. Soc. Chem. Commun. 1979, 19, 866. doi: 10.1039/C39790000866
-
[5]
(5) Heck, R. F.; Nolley, J. P. J. Org. Chem. 1972, 37, 2320. doi: 10.1021/jo00979a024
-
[6]
(6) Cabri, W.; Candiani, I. Accounts Chem. Res. 1995, 28, 2. doi: 10.1021/ar00049a001
-
[7]
(7) Milstein, D.; Stille, J. K. J. Am. Chem. Soc. 1978, 100, 3636. doi: 10.1021/ja00479a077
-
[8]
(8) Yabe, Y.; Maegawa, T.; Monguchi, Y.; Sajiki, H. Tetrahedron 2010, 66, 8654. doi: 10.1016/j.tet.2010.09.027
-
[9]
(9) Tamao, K.; Sumitani, K.; Kumada, M. J. Am. Chem. Soc. 1972, 94, 4374. doi: 10.1021/ja00767a075
-
[10]
(10) Yang, L. M.; Huang, L. F.; Luh, T. Y. Org. Lett. 2004, 6, 1461. doi: 10.1021/ol049686g
-
[11]
(11) Vechorkin, O.; Proust, V.; Hu, X. J. Am. Chem. Soc. 2009, 131, 9756. doi: 10.1021/ja9027378
-
[12]
(12) Torssell, K. B. Natural Product Chemistry: a Mechanistic and Biosynthetic Approach to Secondary Metabolism; JohnWiley & Sons: New Jersey, 1983; p 401.
-
[13]
(13) Hassan, J.; Sevignon, M.; zzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359. doi: 10.1021/cr000664r
-
[14]
(14) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. doi: 10.1021/cr00039a007
-
[15]
(15) Bringmann, G.; Mortimer, A. J. P.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. Angew. Chem. Int. Edit. 2005, 44, 5384.
-
[16]
(16) Kirsch, P.; Bremer, M. Angew. Chem. Int. Edit. 2000, 39, 4216.
-
[17]
(17) Bauer, E. B. Curr. Org. Chem. 2008, 12, 1341. doi: 10.2174/ 138527208786241556
-
[18]
(18) Bolm, C.; Legros, J.; Paih, J. L.; Zani, L. Chem. Rev. 2004, 104, 6217. doi: 10.1021/cr040664h
-
[19]
(19) Czaplik, W. M.; Mayer, M.; Cvengros, J.; vonWangelin, A. J. ChemSusChem 2009, 2, 396. doi: 10.1002/cssc.v2:5
-
[20]
(20) Sherry, B. D.; Furstner, A. Accounts Chem. Res. 2008, 41, 1500. doi: 10.1021/ar800039x
-
[21]
(21) Furstner, A.; Leitner, A. Angew. Chem. Int. Edit. 2002, 41, 609.
-
[22]
(22) Furstner, A.; Leitner, A.; Mendez, M.; Krause, H. J. Am. Chem. Soc. 2002, 124, 13856. doi: 10.1021/ja027190t
-
[23]
(23) Correa, A.; Mancheno, O. G.; Bolm, C. Chem. Soc. Rev. 2008, 37, 1108. doi: 10.1039/b801794h
-
[24]
(24) Furstner, A.; Martin, R. Chem. Lett. 2005, 34, 624. doi: 10.1246/cl.2005.624
-
[25]
(25) Furstner, A.; Martin, R.; Krause, H.; Seidel, G.; ddard, R.; Lehmann, C.W. J. Am. Chem. Soc. 2008, 130, 8773. doi: 10.1021/ja801466t
-
[26]
(26) Noda, D.; Sunada, Y.; Hatakeyama, T.; Nakamura, M.; Nagashima, H. J. Am. Chem. Soc. 2009, 131, 6078. doi: 10.1021/ja901262g
-
[27]
(27) Scheiper, B.; Bonnekessel, M.; Krause, H.; Furstner, A. J. Org. Chem. 2004, 69, 3943. doi: 10.1021/jo0498866
-
[28]
(28) Molander, G. A.; Rahn, B. J.; Shubert, D. C. Tetrahedron Lett. 1983, 24, 5449. doi: 10.1016/S0040-4039(00)94109-1
-
[29]
(29) Quintin, J.; Franck, X.; Hocquemiller, R.; Figadere, B. Tetrahedron Lett. 2002, 43, 3547. doi: 10.1016/S0040-4039(02)00568-3
-
[30]
(30) Hocek, M.; Dvorakova, H. J. Org. Chem. 2003, 68, 5773. doi: 10.1021/jo034351i
-
[31]
(31) Hatakeyama, T.; Nakamura, M. J. Am. Chem. Soc. 2007, 129, 9844. doi: 10.1021/ja073084l
-
[32]
(32) Hatakeyama, T.; Hashimoto, S.; Ishizuka, K.; Nakamura, M. J. Am. Chem. Soc. 2009, 131, 11949. doi: 10.1021/ja9039289
-
[33]
(33) Mayer, M.; Welther, A.; vonWangelin, A. J. ChemCatChem 2011, 3, 1567. doi: 10.1002/cctc.v3.10
-
[34]
(34) Clayton, H. S.; Moss, J. R.; Dry, M. E. J. Organomet. Chem. 2003, 688, 181. doi: 10.1016/j.jorganchem.2003.08.044
-
[35]
(35) Knolker, H. J. Chem. Soc. Rev. 1999, 28, 151. doi: 10.1039/a705401g
-
[36]
(36) Gulak, S.; vonWangelin, A. J. Angew. Chem. Int. Edit. 2012, 51, 1357. doi: 10.1002/anie.201106110
-
[37]
(37) Smith, R. S.; Kochi, J. K. J. Org. Chem. 1976, 41, 502. doi: 10.1021/jo00865a019
-
[38]
(38) Bogdanovic, B.; Schwickardi, M. Angew. Chem. Int. Edit. 2000, 39, 4610.
-
[39]
(39) Kleimark, J.; Hedstrom A.; Larsson P. F.; Johansson, C.; Norrby, P. ChemCatChem 2009, 1, 152. doi: 10.1002/cctc.v1:1
-
[40]
(40) Ren, Q.; Guan, S.; Jiang, F.; Fang, J. J. Phys. Chem. A 2013, 117, 756. doi: 10.1021/jp3045498
-
[41]
(41) Czaplik, W. M.; Mayer, M.; vonWangelin, A. J. ChemCatChem 2011, 3, 135. doi: 10.1002/cctc.201000276
-
[42]
(42) Mo, Z.; Zhang, Q.; Deng, L. Organometallics 2012, 31, 6518. doi: 10.1021/om300722g
-
[43]
(43) Becke, A. D. Phys. Rev. A 1988, 38, 3098. doi: 10.1103/PhysRevA.38.3098
-
[44]
(44) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913
-
[45]
(45) Hertwig, R. H.; Koch, W. Chem. Phys. Lett. 1997, 268, 345. doi: 10.1016/S0009-2614(97)00207-8
-
[46]
(46) Lee, C. T.; Yang, W. T.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785
-
[47]
(47) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623. doi: 10.1021/j100096a001
-
[48]
(48) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200. doi: 10.1139/p80-159
-
[49]
(49) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision C.02; Gaussian Inc.; Wallingford, CT, 2004.
-
[50]
(50) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650. doi: 10.1063/1.438955
-
[51]
(51) McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639. doi: 10.1063/1.438980
-
[52]
(52) Andrae, D.; Haussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor. Chim. Acta. 1990, 77, 123. doi: 10.1007/BF01114537
-
[53]
(53) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669. doi: 10.1002/jcc.10189
-
[54]
(54) Castejon, H.; Wiberg, K. B. J. Am. Chem. Soc. 1999, 121, 2139. doi: 10.1021/ja983736t
-
[55]
(55) Perng, B. C.; Newton, M. D.; Raineri, F. O.; Friedman, H. L. J. Chem. Phys. 1996, 104, 7153 and 7177.
-
[56]
(56) Najafi, M.; Zahedi, M.; Klein, E. Comput. Theor. Chem. 2011, 978, 16. doi: 10.1016/j.comptc.2011.09.014
-
[57]
(57) Schubert, G.; Papai, I. J. Am. Chem. Soc. 2003, 125, 14847. doi: 10.1021/ja035791u
-
[58]
(58) Belelli, P. G.; Damiani, D. E.; Castellani, N. J. Chem. Phys. Lett. 2005, 401, 515. doi: 10.1016/j.cplett.2004.11.089
-
[59]
(59) Feng, J.; Ren, Q. H. Acta. Phys. -Chim. Sin. 2014, 30, 821. [蒋峰, 任清华. 物理化学学报, 2014, 30, 821.]
-
[60]
(60) Nova, A.; Ujaque, G.; Maseras, F.; Liedos, A.; Espinet, P. J. Am. Chem. Soc. 2006, 128, 14571. doi: 10.1021/ja0635736
-
[1]
-
-
[1]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[2]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[3]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[4]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[5]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[6]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[7]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[8]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[9]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[10]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[11]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[12]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[13]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[14]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[15]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[16]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[17]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[18]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[19]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[20]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[1]
Metrics
- PDF Downloads(315)
- Abstract views(937)
- HTML views(103)