Citation: PAN Wen-Ya, HUANG Liang, QIN Feng, ZHUANG Yan, LI Xue-Mei, MA Jian-Xue, SHEN Wei, XU Hua-Long. Regulation of Pore Structure and Acidity of a ZSM-5 Catalyst for Dehydration of Glycerol to Acrolein[J]. Acta Physico-Chimica Sinica, ;2015, 31(5): 965-972. doi: 10.3866/PKU.WHXB201503024 shu

Regulation of Pore Structure and Acidity of a ZSM-5 Catalyst for Dehydration of Glycerol to Acrolein

  • Received Date: 9 December 2014
    Available Online: 2 March 2015

    Fund Project: 上海市科学技术委员会资助国际合作项目(14120700700) (14120700700)重点实验室基金(11JC1400400)资助 (11JC1400400)

  • Pore structure and acidity of ZSM-5 catalysts were successfully regulated by alkali treatment. ZSM- 5 was etched in 0.2 mol·L- 1 NaOH solution at 65 and 85 ℃. Micro-mesoporous ZSM-5 catalysts were successfully prepared with a high density of acidic sites. The activity and stability were significantly enhanced with alkali-treated ZSM-5, giving a conversion of glycerol above 95%, with selectivity for acrolein of 78% after 10 h compared with a ZSM-5-at85 (alkali-treated at 85 ℃) catalyst. Characterization of N2 adsorption and desorption isotherms, X-ray diffraction (XRD), 27Al mass atomic spectroscopy-nuclear magnetic resonance (27Al MAS-NMR), and transmission electron microscopy (TEM) were performed to interpret the morphology and surface properties. The results reveal that the Si in the framework of ZSM-5 was leached out by alkali treatment, and many mesopores were formed on the ZSM-5 surface. However, the MFI topology did not change and Al was mainly integrated within the framework. X-ray photoelectron spectroscopy (XPS), X-ray fluorescence (XRF), and NH3-temperature-programed desorption (NH3-TPD) experiments demonstrated that the molar ratio of Si/ Al on the external surface was lower than that in the framework, indicating that more Si on the external surface of ZSM-5 was leached by alkali treatment, while the acidic density increased because of the lower molar ratio of Si/Al near newly formed mesopores. ZSM-5 catalysts with mesopores and higher acidic density enhance reactant diffusion and coking tolerance, which improves the activity and stability during glycerol dehydration.

  • 加载中
    1. [1]

      (1) Lourenço, J. P.; Macedo, M. I.; Fernandes, A. Catal. Commun. 2012, 19, 105. doi: 10.1016/j.catcom.2011.12.029

    2. [2]

      (2) Benjamin, K.; Bastien, P.; Franck, D. ACS Catal. 2013, 3, 1819. doi: 10.1021/cs400354p

    3. [3]

      (3) Behr, A.; Eilting, J.; Irawadi, K.; Leschinski, J.; Lindner, F. Green Chem. 2008, 10, 13. doi: 10.1039/B710561D

    4. [4]

      (4) Pagliaro, M.; Ciriminna, R.; Kimura, H.; Rossi, M.; Pina, C. D. Angew. Chem. Int. Edit. 2007, 46, 4434.

    5. [5]

      (5) Jo, B. Y.; Kim, E. J.; Moon, S. H. Appl. Catal. A: Gen. 2007, 332, 257. doi: 10.1016/j.apcata.2007.08.025

    6. [6]

      (6) Luiz, G. P.; Rosiane, N. D.; Teresita, G. J. Catal. 2013, 300, 102. doi: 10.1016/j.jcat.2013.01.003

    7. [7]

      (7) Kim, Y. T.; Jung, K. D.; Park, E. D. Microporous Mesoporous Mat. 2010, 131, 28. doi: 10.1016/j.micromeso.2009.11.037

    8. [8]

      (8) Jia, C. J.; Liu, Y.; Schmidt, W.; Lu, A. H.; Schüth, F. J. Catal. 2010, 269, 71. doi: 10.1016/j.jcat.2009.10.017

    9. [9]

      (9) Kim, Y. T.; Jung, K. D.; Park, E. D. Appl. Catal. A: Gen. 2011, 393, 275. doi: 10.1016/j.apcata.2010.12.007

    10. [10]

      (10) Gu, Y. L.; Cui, N. Y.; Yu, Q. J. Appl. Catal. A: Gen. 2012, 429, 9.

    11. [11]

      (11) Tsukuda, E.; Sato, S.; Takahashi, R.; Sodesawa, T. Catal. Commun. 2007, 8, 1349. doi: 10.1016/j.catcom.2006.12.006

    12. [12]

      (12) Katryniok, B.; Paul, S.; Capron, M.; Lancelot, C.; Belliere- Baca, V.; Rey, P.; Dumeignil, F. Green Chem. 2010, 12, 1922. doi: 10.1039/c0gc00254b

    13. [13]

      (13) Ning, L. L.; Ding, Y. J.; Chen, W. M.; ng, L. F.; Lin, R. H.; Lü, Y.; Xin, Q. Chin. J. Catal. 2008, 29, 212. [宁丽丽, 丁云杰, 陈维苗, 龚磊峰, 林荣和, 吕元, 辛勤. 催化学报, 2008, 29, 212.] doi: 10.1016/S1872-2067(08)60026-1

    14. [14]

      (14) Lauriol-Garbey, P.; Loridant, S. Catal. Commun. 2011, 16, 170. doi: 10.1016/j.catcom.2011.09.026

    15. [15]

      (15) Stoši?, D.; Bennici, S. Catal. Commun. 2012, 17, 23. doi: 10.1016/j.catcom.2011.10.004

    16. [16]

      (16) Liu, Q. B.; Zhang, Z.; Du, Y.; Li, J. Catal. Lett. 2009, 127, 419. doi: 10.1007/s10562-008-9723-y

    17. [17]

      (17) Suprun, W.; Lutecki, M.; Haber, T.; Papp, H. J. Mol. Catal. A: Chem. 2009, 309, 71. doi: 10.1016/j.molcata.2009.04.017

    18. [18]

      (18) Okuno, M.; Matsunami, E.; Takahashi, T.; Kasuga, H. Catalysts for Gas-Phase Spin-Dehydration in Manufacture of Glycerin, Acrolein and Its Derivative, Contains Preset Amount of Binder and Crystalline Metallosilicate Containing Preset Ratio of Silicon and Specific Atom. Japanese Patent, JP2007301505-A, 22 Nov 2007.

    19. [19]

      (19) Dubois, J. L.; Duquenne, C.; Hoelderich, W. Manufacturing Acrolein, Useful as Intermediate for Synthesis of Methionine and Acrylic Acid, by Dehydration of Glycerol in the Presence of Molecular Oxygen at Outside the Flammability Range. WO2006087083-A2, 24 Aug 2006.

    20. [20]

      (20) Kim, Y. T.; Jung, K. D.; Park, E. D. Appl. Catal. A: Gen. 2011, 393, 5.

    21. [21]

      (21) Chal, R.; Gerardin, C.; Bulut, M.; Donk, S. ChemCatChem 2011, 3, 67. doi: 10.1002/cctc.201000158

    22. [22]

      (22) Massa, M.; Andersson, A.; Finocchio, E.; Busca, G.; Lenrick, F.; Wallenberg, L. R. J. Catal. 2013, 297, 93. doi: 10.1016/j.jcat.2012.09.021

    23. [23]

      (23) Zhao, H.; Zhou, C. H.; Wu, L. M.; Lou, J. Y.; Li, N.; Yang, H. M.; Tong, D. S.; Yu, W. H. Applied Clay Science 2013, 74, 154. doi: 10.1016/j.clay.2012.09.011

    24. [24]

      (24) Ogura, M.; Shinomiya, S. Y.; Tateno, J.; Nara, Y.; Kikuchi, E.; Matsukata, M. Chem. Lett. 2000, 29, 882.

    25. [25]

      (25) Ogura, M.; Shinomiya, S. Y.; Tateno, J.; Nara, Y.; Nomura, M.; Kikuchi, E.; Matsukata, M. Appl. Catal. A: Gen. 2001, 219, 33. doi: 10.1016/S0926-860X(01)00645-7

    26. [26]

      (26) Groen, J. C.; Peffer, L. A. A.; Moulijn, J. A.; Pérez-Ramírez, J. Chem. -Eur. J. 2005, 11, 4983.

    27. [27]

      (27) Groen, J. C.; Zhu, W. D.; Brouwer, S.; Huynink, S. J.; Kapteijn, F.; Moulijn, J. A.; Pérez-Ramírez, J. J. Am. Chem. Soc. 2007, 129, 355. doi: 10.1021/ja065737o

    28. [28]

      (28) Verboekend, D.; Pérez-Ramírez, J. Chem. -Eur. J. 2011, 17, 1137. doi: 10.1002/chem.v17.4

    29. [29]

      (29) Ravishankar, R.; Kirschhock, C.; Schoeman, B. J.; Vanoppen, P.; Grobet, P. J.; Storck, S. J. Phys. Chem. B 1998, 102, 2633. doi: 10.1021/jp973147u

    30. [30]

      (30) Zeolites Characterization and Catalysis: A Tutorial; Chester, A. W., Derouane, E. G. Eds. Springer-Verlag New York Inc.: New York, 2009; pp 358-365.

    31. [31]

      (31) Kentgens, A. P.; Scholle, M. K.; Veeman, W. S. J. Chem. Phys. 1987, 87, 4357.

    32. [32]

      (32) Mei, C. S.; Wen, P. Y.; Liu, Z. C.; Liu, H. X.; Wang, Y. D.; Yang, W. M.; Xie, Z. K.; Hua, W. M.; Gao, Z. J. Catal. 2008, 258, 243. doi: 10.1016/j.jcat.2008.06.019

    33. [33]

      (33) Lietz, G.; Schnabel, K. H.; Peuker, C.; Gross, T. J. Catal. 1994, 148, 562. doi: 10.1006/jcat.1994.1242

    34. [34]

      (34) Lutz, W.; Grossmann, A.; Bülow, M.; Gross, T. Cryst. Res. Tech. 1990, 25, 135.

    35. [35]

      (35) Chai, S. H.; Wang, H. P.; Liang, Y.; Xu, B. Q. Green Chem. 2007, 9, 1130.

    36. [36]

      (36) Corma, A.; Huber, G.W.; Sauvanaud, L.; O′Connor, P. J. Catal. 2008, 257, 163. doi: 10.1016/j.jcat.2008.04.016

    37. [37]

      (37) Arita, Y.; Kasuga, H.; Kirishiki, K. Regeneration of Catalyst Used for Glycerin-Spin Dehydration for Manufacturing Glycerin Derivative, Involves Contacting Oxidizing Agent with Carbon-like Substance in Surface of Catalyst, and Removing Carbon-Like Substance. Japanese Patent, JP2008110298-A, 15 May 2008.

    38. [38]

      (38) Possato, L. G.; Diniz, R. N.; Garetto, T.; Pulcinelli, S. H.; Santilli, C. V.; Martins, L. J. Catal. 2013, 300, 102. doi: 10.1016/j.jcat.2013.01.003

    39. [39]

      (38) Possato, L. G.; Diniz, R. N.; Garetto, T.; Pulcinelli, S. H.; Santilli, C. V.; Martins, L. J. Catal. 2013, 300, 102. doi: 10.1016/j.jcat.2013.01.003


  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    3. [3]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    4. [4]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    5. [5]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    6. [6]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    7. [7]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    8. [8]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    9. [9]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    10. [10]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    11. [11]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    12. [12]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    13. [13]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    14. [14]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    15. [15]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    16. [16]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    17. [17]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    18. [18]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    19. [19]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    20. [20]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

Metrics
  • PDF Downloads(316)
  • Abstract views(585)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return