Citation: XU Jia-Qi, GUO Jun-Jiang, LIU Ai-Ke, WANG Jian-Li, TAN Ning-Xin, LI Xiang-Yuan. Construction of Autoignition Mechanisms for the Combustion of RP-3 Surrogate Fuel and Kinetics Simulation[J]. Acta Physico-Chimica Sinica, ;2015, 31(4): 643-652. doi: 10.3866/PKU.WHXB201503022 shu

Construction of Autoignition Mechanisms for the Combustion of RP-3 Surrogate Fuel and Kinetics Simulation

  • Received Date: 2 November 2014
    Available Online: 2 March 2015

    Fund Project: 国家自然科学基金(91441132)资助项目 (91441132)

  • According to a component analysis of RP- 3 aviation kerosene and eight surrogate models' comparative data, a surrogate model comprising n-dodecane/1,3,5-trimethylcyclohecane/n-propylbenzene (73.0%/14.7%/12.3%, mass fraction) was obtained. A detailed mechanism for the combustion of RP-3 surrogate fuel at high temperature was developed using an automatic generation software package, ReaxGen. Ignition delay times simulated using this mechanism were compared with experimental data. A detailed mechanism was reduced by adopting rate-of-production analysis and approximate trajectory optimization al rithm (ATOA) reduced methods. Finally, the sensitivity of ignition delay time was analyzed under conditions of different equivalent ratios and pressures using the reduced mechanism. Differences in key reactions contributing to the ignition delay time were identified at different equivalent ratios. The results indicate that our mechanisms can characterize the ignition delay time during combustion of RP-3 kerosene at high temperature.

  • 加载中
    1. [1]

      (1) Humer, S.; Frassoldati, A.; Granata, S.; Faravelli, T.; Ranzi, E.; Seiser, R.; Seshadri, K. Proc. Combust. Inst. 2007, 31 (1), 393. doi: 10.1016/j.proci.2006.08.008

    2. [2]

      (2) Dagaut, P. Phys. Chem. Chem. Phys. 2002, 4 (11), 2079. doi: 10.1039/b110787a

    3. [3]

      (3) Patterson, P.; Kyne, A.; Pourkashanian, M.; Williams, A.; Wilson, C. J. Propul. Power 2001, 17 (2), 453. doi: 10.2514/2.5764

    4. [4]

      (4) Mont mery, C. J.; Cannon, S. M.; Mawid, M. A.; Sekar, B. Reduced Chemical Kinetic Mechanisms for JP-8 Combustion. In Procedings of the 40th AIAA Aerospace Sciences Meeting and Exhibit, 40th AIAAAerospace Sciences Meeting and Exhibit, Reno, Nevada, Jan 14-17, 2002; American Institute of Aeronautics and Astronautics: Reno, Nevada, 2002.

    5. [5]

      (5) Cathormet, M.; Voisin, D.; Etsordi, A.; Sferdean, C.; Reuillon, M.; Boettner, J. C.; Dagaut, P. Kerosene Combustion Modeling Using Detailed and Reduced Chemical Kinetic Mechanisms. In RTO Meeting Proceedings 14, Gas Turbine Engine Combustion, Emissions and Alternative Fuels, RTO AVT Symposium, Lisbon, Portugal, Oct 12-16, 1998.

    6. [6]

      (6) Honnet, S.; Seshadri, K.; Niemann, U.; Peters, N. Proc. Combust. Inst. 2009, 32 (1), 485. doi: 10.1016/j.proci.2008.06.218

    7. [7]

      (7) Fan, X. J.; Yu, G. J. Propul. Technol. 2006, 27 (2), 187. [范学军, 俞刚. 推进技术, 2006, 27 (2), 187.]

    8. [8]

      (8) Xiao, B. G.; Yang, S. H.; Zhao, H. Y.; Qian, W. Q.; Le, J. L. J. Power Sources 2010, 25 (9), 1948. [肖保国, 杨顺华, 赵慧勇, 钱炜祺, 乐嘉陵. 航空动力学报, 2010, 25 (9), 1948.]

    9. [9]

      (9) Li, J.; Shao, J. X.; Liu, C. X.; Rao, H. B.; Li, Z. R.; Li, X. Y. Acta Chim. Sin. 2010, 68 (3), 239. [李军, 邵菊香, 刘存喜, 饶含兵, 李泽荣, 李象远. 化学学报, 2010, 68 (3), 239.]

    10. [10]

      (10) Guo, J. J.; Hua, X. X.; Wang, F.; Tan, N. X.; Li, X. Y. Acta Phys. -Chim. Sin. 2014, 30 (6), 1027. [郭俊江, 华晓筱, 王繁, 谈宁馨, 李象远. 物理化学学报, 2014, 30 (6), 1027.] doi: 10.3866/PKU.WHXB201404031

    11. [11]

      (11) Hua, X. X.; Wang, J. B.; Wang, Q. D.; Tan, N. X.; Li, X. Y. Acta Phys. -Chim. Sin. 2011, 27 (12), 2755. [华晓筱, 王静波, 王全德, 谈宁馨, 李象远. 物理化学学报, 2011, 27 (12), 2755.] doi: 10.3866/PKU.WHXB20112755

    12. [12]

      (12) Guo, J. J.; Wang, J. B.; Hua, X. X.; Li, Z. R.; Tan, N. X.; Li, X. Y. Chem. Res. Chin. Univ. 2014, 30 (3), 480. doi: 10.1007/s40242-014-3460-0

    13. [13]

      (13) Tan, N. X.; Wang, J. B.; Hua, X. X.; Li, Z. R.; Li, X. Y. Chem. J. Chin. Univ. 2011, 32 (8), 1832. [谈宁馨, 王静波, 华晓筱, 李泽荣, 李象远. 高等学校化学学报, 2011, 32 (8), 1832.]

    14. [14]

      (14) Wang, H.; You, X. Q.; Joshi, A. V.; Davis, S. G.; Laskin, A.; E lfopoulos, F.; Law, C. K. USC Mech Version II. High- Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds. http://ignis.usc.edu/USC_Mech_II.htm (accessed May, 2007).

    15. [15]

      (15) Dagaut, P.; El Bakali, A.; Ristori, A. Fuel 2006, 85 (7), 944.

    16. [16]

      (16) Tang, H. C.; Zhang, C. H.; Li, P.; Wang, L. D.; Ye, B.; Li, X. Y. Acta Phys. -Chim. Sin. 2012, 28 (4), 787. [唐洪昌, 张昌华, 李萍, 王利东, 叶彬, 李象远. 物理化学学报, 2012, 28 (4), 787.] doi: 10.3866/PKU.WHXB201202161

    17. [17]

      (17) Zhang, C.; Li, B.; Rao, F.; Li, P.; Li, X. Proc. Combust. Inst. 2014, 35 (3), 3151.

    18. [18]

      (18) Chen, Z. Studies on the Initiation, Propagation, and Extinction of Premixed Flames. Ph.D. Dissertation, Princeton University: Princeton, New Jersey, 2009.

    19. [19]

      (19) Prager, J.; Najm, H. N.; Valorani, M.; ussis, D. A. Proc. Combust. Inst. 2009, 32 (1), 509. doi: 10.1016/j.proci.2008.06.074

    20. [20]

      (20) Lu, T.; Law, C. K. Proc. Combust. Inst. 2005, 30 (1), 1333. doi: 10.1016/j.proci.2004.08.145

    21. [21]

      (21) Nagy, T.; Turányi, T. Combust. Flame 2009, 156 (2), 417. doi: 10.1016/j.combustflame.2008.11.001

    22. [22]

      (22) Ren, Z.; Pope, S. B. Proc. Combust. Inst. 2005, 30 (1), 1293. doi: 10.1016/j.proci.2004.07.017

    23. [23]

      (23) Liu, A. K.; Li, S. H.; Wang, F. J. Propul. Technol. 2015, 36 (1), 142. [刘爱科, 李树豪, 王繁. 推进技术, 2015, 36 (1), 142.]

    24. [24]

      (24) Lu, T.; Law, C. K. Prog. Energ. Combust. 2009, 35 (2), 192. doi: 10.1016/j.pecs.2008.10.002

    25. [25]

      (25) Lindberg, B. BIT 1980, 20 (4), 486. doi: 10.1007/BF01933642

    26. [26]

      (26) Davenport, A; Tsang, E.; Wang, C. J.; Zhu, K. GENET: A Connectionist Architecture for Solving Constraint Satisfaction Problems by Iterative Improvement. In AAAI '94 Proceedings of the Twelfth National Cconference on Artificial Intelligence (Vol. 1), The Twelfth National Conference on Artificial Intelligence, Seattle, Washington, Jul 31-Aug 4, 1994; AAAI Press: Seattle Washington, 1994; pp 325-330.

    27. [27]

      (27) Kumar, K.; Mittal, G.; Sung, C. J.; Law, C. K. Combust. Flame 2008, 153 (3), 343. doi: 10.1016/j.combustflame.2007.11.012

    28. [28]

      (28) Metcalfe, W. K.; Burke, S. M.; Ahmed, S. S.; Curran, H. J. Int. J. Chem. Kinet. 2013, 45 (10), 638. doi: 10.1002/kin.2013.45.issue-10


  • 加载中
    1. [1]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    2. [2]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    3. [3]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    4. [4]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    5. [5]

      Shuyong Zhang Yaxian Zhu Wenqing Zhang Yuzhi Wang Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026

    6. [6]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    7. [7]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    8. [8]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    9. [9]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    10. [10]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    11. [11]

      Yiming Lu Xiang Xie Xiaoqing Qiu Yang Liu Xinyuan Cheng . The New Year’s Eve of the Aviation Brake Material Family. University Chemistry, 2024, 39(9): 203-207. doi: 10.12461/PKU.DXHX202403061

    12. [12]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    13. [13]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    14. [14]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    15. [15]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    16. [16]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    17. [17]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    18. [18]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

    19. [19]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    20. [20]

      Yan Zhang Ping Wang Tiebo Xiao Futing Zi Yunlong Chen . Measures for Ideological and Political Construction in Analytical Chemistry Curriculum. University Chemistry, 2024, 39(4): 255-260. doi: 10.3866/PKU.DXHX202401017

Metrics
  • PDF Downloads(293)
  • Abstract views(612)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return