Citation: ZHAO Shu-Heng, LANG Lin, YIN Xiu-Li, YANG Wen-Shen, WU Chuang-Zhi. TPAOH Template Removal from High-Silica ZSM-5 by Low-Temperature Hydrocracking[J]. Acta Physico-Chimica Sinica, ;2015, 31(4): 793-799. doi: 10.3866/PKU.WHXB201503021 shu

TPAOH Template Removal from High-Silica ZSM-5 by Low-Temperature Hydrocracking

  • Received Date: 28 October 2014
    Available Online: 2 March 2015

    Fund Project: 国家自然科学基金(51106165, 51202245) (51106165, 51202245)广东省自然科学基金(10251007006000000, S2013010014896)资助项目 (10251007006000000, S2013010014896)

  • Zeolite membranes, especially the MFI-type zeolite membranes, have attracted significant attention for decades because of their special properties. While organic templates such as tetrapropylammonium hydroxide (TPAOH) have typically been used for the synthesis of ZSM-5 zeolite and zeolite membranes, the templates remain trapped in the as-synthesized zeolite crystals. A common method for removing organic templates and generating porous frameworks is calcination; however, during this process, the channel structure may be affected. In particular, for ZSM-5 membranes, membrane defects may be produced and the separation efficiency therefore may decrease to some extent. In this study, the low-temperature hydrocracking of TPAOH in ZSM-5 zeolite crystals was studied under H2/N2, while N2 adsorption, thermogravimetric (TG) analysis, Fourier transform infrared (FTIR) spectroscopy, temperature-programmed desorption of ammonia (NH3-TPD), and Raman spectroscopy were used to characterize zeolite samples. The results show that the organic template in the pores of ZSM-5 can be effectively removed below 350 ℃ by low-temperature hydrocracking. Characterization analyses by BET specific surface area, TG, FTIR, and Raman spectroscopy demonstrated that a reducing atmosphere containing H2 was more conducive to template removal at low temperature than atmospheres of air or N2. The degree of template removal increased with temperature increasing. The BET surface area of the crystal after hydrocracking at 280 ℃ reached 252 m2·g-1, although a small amount of organic residue remained. Furthermore, after hydrocracking at 350 ℃, the BET surface area reached 399m2·g-1, and only trace amount of inorganic carbon residue remained. In addition, the introduction of hydrogen at low temperatures could prevent coke deposits on acid sites and thus ZSM-5 zeolite crystals had greater numbers of acidic sites after low-temperature hydrocracking.

  • 加载中
    1. [1]

      (1) Eslava, S.; Urrutia, J.; Busawon, A. N.; Baklanov, M. R.; Iacopi, F.; Aldea, S.; Maex, K.; Martens, J. A.; Kirschhock, C. E. A. J. Am. Chem. Soc. 2008, 130, 17528. doi: 10.1021/ja8066572

    2. [2]

      (2) Yordanov, I.; Knoerr, R.; DeWaele, V.; Bazin, P.; Thomas, S.; Rivallan, M.; Lakiss, L.; Metzger, T. H.; Mintova, S. J. Phys. Chem. C 2010, 114, 20974. doi: 10.1021/jp105490g

    3. [3]

      (3) Wang, Z. X.; Yan, W. F.; Tian, D. Y.; Cao, X. J.; Yu, J. H.; Xu, R. R. Acta Phys. -Chim. Sin. 2010, 26, 2044. [王周翔, 闫文付, 田大勇, 曹学静, 于吉红, 徐如人. 物理化学学报, 2010, 26, 2044.] doi: 10.3866/PKU.WHXB20100714

    4. [4]

      (4) Zhang, Y. F.; Tokay, B.; Funke, H. H.; Falconer, J. L.; Noble, R. D. J. Membr. Sci. 2010, 363, 29. doi: 10.1016/j.memsci.2010.06.054

    5. [5]

      (5) Yuan, W. H.; Chang, R. R.; Liu, X. C.; Li, L. Acta Phys. -Chim. Sin. 2011, 27, 2493. [袁文辉, 常然然, 刘晓晨, 李莉. 物理化学学报, 2011, 27, 2493.] doi: 10.3866/PKU.WHXB20110917

    6. [6]

      (6) Gascon, J.; Kapteijn, F.; Zornoza, B.; Sebastián, V.; Casado, C.; Coronas, J. Chem. Mater. 2012, 24, 2829. doi: 10.1021/cm301435j

    7. [7]

      (7) Hinkle, K. R.; Jameson, C. J.; Murad, S. J. Phys. Chem. C 2014, 118, 23803. doi: 10.1021/jp507155s

    8. [8]

      (8) Chen, H. L.; Li, Y. S.; Zhu, G. Q.; Yang, W. S. Sci. China Ser. B -Chem. 2009, 52, 579.

    9. [9]

      (9) Zhong, Y. J.; Xu, X. H.; Xiao, Q.; Jiang, L.; Zhu, W. D.; Ma, C. A. Acta Phys. -Chim. Sin. 2008, 24, 1875. [钟依均, 许晓华, 肖强, 姜丽, 朱伟东, 马淳安. 物理化学学报, 2008, 24, 1875.] doi: 10.3866/PKU.WHXB20081023

    10. [10]

      (10) Li, X. M.; Yan, Y. S.; Wang, Z. B. Ind. Eng. Chem. Res. 2010, 49, 5933. doi: 10.1021/ie1000136

    11. [11]

      (11) Lang, L.; Zhang, C.; Yin, X. L.; Wu, C. Z. Prog. Chem. 2011, 23, 1022. [郎林, 张超, 阴秀丽, 吴创之. 化学进展, 2011, 23, 1022.]

    12. [12]

      (12) Li, X. M.; Wang, Z. B.; Zheng, J.; Shao, S. Q.; Wang, Y. C.; Yan, Y. S. Chin. J. Catal. 2011, 32, 217. [李显明, 王正宝, 郑洁, 邵世群, 王胤超, 严玉山. 催化学报, 2011, 32, 217.] doi: 10.1016/S1872-206 (10)60167-2

    13. [13]

      (13) Jin, W. Y.; Cheng, D. G.; Chen, F. Q.; Zhan, X. L. Acta Phys. -Chim. Sin. 2013, 29, 139. [金炜阳, 程党国, 陈丰秋, 詹晓力. 物理化学学报, 2013, 29, 139.] doi: 10.3866/PKU. WHXB201210263

    14. [14]

      (14) Wang, Z.; Yu, T.; Nian, P.; Zhang, Q. C.; Yao, J. K.; Li, S.; Gao, Z. N.; Yue, X. L. Langmuir 2014, 30, 4531. doi: 10.1021/la500115t

    15. [15]

      (15) Dong, J. H.; Lin, Y. S.; Hu, M. Z. C.; Peascoe, R. A.; Payzant, E. A. Microporous Mesoporous Mat. 2000, 34, 241. doi: 10.1016/S1387-1811(99)00175-4

    16. [16]

      (16) Zhang, X. F.; Li, B. M.; Wang, J. Q.; Liu, C. H. Petrochem. Technol. 2002, No. 1, 10. [张雄福, 李邦民, 王金渠, 刘长厚.石油化工, 2002, No. 1, 10.]

    17. [17]

      (17) Wang, C.; Liu, X. F.; Cui, R. L.; Zhang, B. Q. Prog. Chem. 2008, 20, 1860. [王聪, 刘秀凤, 崔瑞利, 张宝泉. 化学进展, 2008, 20, 1860.]

    18. [18]

      (18) Hong, Z.; Sun, F.; Chen, D. D.; Zhang, C.; Gu, X. H.; Xu, N. P. Int. J. Hydrog. Energy 2013, 38, 8409. doi: 10.1016/j.ijhydene.2013.04.154

    19. [19]

      (19) Liu, X. F.; Zhang, B. Q.; Lin, Y. S. J. Chin. J. Inorg. Chem. 2008, 24, 1679. [刘秀凤, 张宝泉, 林跃生. 无机化学学报, 2008, 24, 1679.]

    20. [20]

      (20) Cheng, Y.; Yang, Y. C.; Li, J. S.; Sun, X. Y.; Wang, L. J. Chin. J. Inorg. Chem. 2005, 21, 796. [成岳, 杨宇川, 李健生, 孙秀云, 王连军. 无机化学学报, 2005, 21, 796.]

    21. [21]

      (21) Kanezashi, M.; O'Brien, J.; Lin, Y. S. J. Membr. Sci. 2006, 286, 213. doi: 10.1016/j.memsci.2006.09.038

    22. [22]

      (22) Zhang, B. Q.; Wang, C.; Lang, L.; Cui, R. L.; Liu, X. F. Adv. Funct. Mater. 2008, 18, 3434. doi: 10.1002/adfm.v18:21

    23. [23]

      (23) Jiang, H. Y.; Zhang, B. Q.; Lin, Y. S.; Li, Y. D. Chin. Sci. Bull. 2004, 49, 2133. [蒋海洋, 张宝泉, 林跃生, 李永丹. 科学通报, 2004, 49, 2133.] doi: 10.1007/BF03185778

    24. [24]

      (24) palakrishnan, S.; Yamaguchi, T.; Nakao, S. J. Membr. Sci. 2006, 274, 102. doi: 10.1016/j.memsci.2005.08.005

    25. [25]

      (25) Heng, S.; Lau, P. P. S.; Yeung, K. L.; Djafer, M.; Schrotter, J. C. J. Membr. Sci. 2004, 243, 69. doi: 10.1016/j.memsci.2004.05.025

    26. [26]

      (26) Jirka, I.; Zikánová, A.; Novák, P.; Ko?i?ík, M.; Weber, J.; Pelouchová, H.; ?erňanský, M. Mater. Chem. Phys. 2005, 90, 116. doi: 10.1016/j.matchemphys.2004.10.019

    27. [27]

      (27) Jareman, F.; Andersson, C.; Hedlund, J. Microporous Mesoporous Mat. 2005, 79, 1. doi: 10.1016/j.micromeso.2004.10.032

    28. [28]

      (28) Li, Q. H.; Amweg, M. L.; Yee, C. K.; Navrotsky, A.; Parikh, A. N. Microporous Mesoporous Mat. 2005, 87, 45. doi: 10.1016/j.micromeso.2005.07.048

    29. [29]

      (29) Patarin, J. Angew. Chem. Int. Edit. 2004, 43, 3878.

    30. [30]

      (30) Xie, L. L.; Li, Q. H.; Yuan, H.; Wang, L. J.; Tian, Z.; Bing, N. C. Acta Chim. Sin. 2008, 66, 2113. [解丽丽, 李庆华, 袁昊, 王利军, 田震, 邴乃慈. 化学学报, 2008, 66, 2113.]

    31. [31]

      (31) Su, G. X.; Jin, J. S.; Cui, W. G.; Liu, H. T.; Zhang, Z. T. Chin. J. Process Eng. 2012, No. 1, 64. [苏广训, 金君素, 崔文广, 刘洪涛, 张泽廷. 过程工程学报, 2012, No. 1, 64.]

    32. [32]

      (32) Wang, Y. H.; Tan, J.; Liu, J.; Chen, Y.; Li, X. Y. Acta Chim. Sin. 2010, 68, 2471. [王业红, 谭涓, 刘靖, 陈颖, 李旭影. 化学学报, 2010, 68, 2471.]

    33. [33]

      (33) Liu, Y. Template Removal from Molecular SievesUsing Cold Plasma. Ph.D. Dissertation, Tianjin University, Tianjin, 2010. [刘媛. 冷等离子体脱除分子筛模板剂研究[D]. 天津: 天津大学, 2010.]

    34. [34]

      (34) Serrano, D. P.; García, R. A.; Linares, M.; Gil, B. Catal. Today 2012, 179, 91. doi: 10.1016/j.cattod.2011.06.029

    35. [35]

      (35) Pachtová, O.; Kocirik, M.; Zikánová, A.; Bernauer, B.; Miachon, S.; Dalmon, J. A. Microporous Mesoporous Mat. 2002, 55, 285. doi: 10.1016/S1387-1811(02)00430-4

    36. [36]

      (36) Mateo, E.; Paniagua, A.; Güell, C.; Coronas, J.; Santamaría, J. Mater. Res. Bull. 2009, 44, 1280. doi: 10.1016/j.materresbull.2009.01.003

    37. [37]

      (37) Gao, X. T.; Yeh, C. Y.; Angevine, P. Microporous Mesoporous Mat. 2004, 70, 27. doi: 10.1016/j.micromeso.2004.02.014

    38. [38]

      (38) Liu, X. G.; Xu, L.; Zhang, B. Q.; Liu, X. F. Microporous Mesoporous Mat. 2014, 193, 127. doi: 10.1016/j.micromeso.2013.12.034

    39. [39]

      (39) Liu, X. B.; Liu, Z. M.; Chang, F. X.; Qu, L. H.; Sang, S. Y.; Zhang, Y. Y. New Carbon Mater. 2006, 21, 237. [刘献斌, 刘中民, 常福祥, 曲丽红, 桑石云, 张阳阳. 新型炭材料, 2006, 21, 237.]

    40. [40]

      (40) Karwacki, L.; Weckhuysen, B. M. Phys. Chem. Chem. Phys. 2011, 13, 3681. doi: 10.1039/C0CP02220A

    41. [41]

      (41) Jirka, I.; Sazama, P.; Zikánová, A.; Hrabánek, P.; Kocirik, M. Microporous Mesoporous Mat. 2011, 137, 8. doi: 10.1016/j.micromeso.2010.08.015

    42. [42]

      (42) Ivanov, D. P.; Sobolev, V. I.; Panov, G. I. Appl. Catal. A 2003, 241, 113. doi: 10.1016/S0926-860X(02)00462-3

    43. [43]

      (43) Guisnet, M.; Costa, L.; Ribeiro, F. R. J. Mol. Catal. A: Chem. 2009, 305, 69. doi: 10.1016/j.molcata.2008.11.012

    44. [44]

      (44) He, J.; Yang, X. B.; Evans, D. G.; Duan, X. Mater. Chem. Phys. 2003, 77, 270. doi: 10.1016/S0254-0584(01)00557-0

    45. [45]

      (45) Kuhn, J.; Motegh, M.; Gross, J.; Kapteijn, F. Microporous Mesoporous Mat. 2009, 120, 35. doi: 10.1016/j.micromeso.2008.08.061


  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    5. [5]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    6. [6]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    7. [7]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    8. [8]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    9. [9]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    10. [10]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    11. [11]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    12. [12]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    13. [13]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    14. [14]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    15. [15]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    16. [16]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    17. [17]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    18. [18]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    19. [19]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    20. [20]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

Metrics
  • PDF Downloads(294)
  • Abstract views(655)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return