Citation: LI Xiang-Qi, FAN Qing-Fei, LI Guang-Li, HUANG Yao-Han, GAO Zhao, FAN Xi-Mei, ZHANG Chao-Liang, ZHOU Zuo-Wan. Syntheses of ZnO Nano-Arrays and Spike-Shaped CuO/ZnO Heterostructure[J]. Acta Physico-Chimica Sinica, ;2015, 31(4): 783-792. doi: 10.3866/PKU.WHXB201502062 shu

Syntheses of ZnO Nano-Arrays and Spike-Shaped CuO/ZnO Heterostructure

  • Received Date: 15 December 2014
    Available Online: 6 February 2015

    Fund Project: 国家高技术研究发展计划项目(2009AA03Z427)资助 (2009AA03Z427)

  • A low-temperature hydrothermal route was applied to fabricate ZnO nano-arrays on fluorinated tin oxide (FTO)-coated glass substrates. The effects of the molar ratios of the precursor concentrations on the ZnO nano-arrays were studied with respect to morphology, optical properties, and growth mechanism. The results show that the length reduced with the increased molar ratios of precursor concentrations, and the diameter first increased then decreased. In general, the change of optical band gap followed the same trend as that for the change in diameter. When the molar ratio of precursor concentrations is 5:5, the optical band gap is 3.2 eV, which is similar to the theoretical value at room temperature. We propose that the optimal molar ratio of zinc nitrate (Zn(NO3)2) to hexamethylenetetramine (HMT, C6H12N4) is 5:5 for the preparation of ZnO nano-arrays. Spike-shaped CuO/ZnO nano-arrays were also successfully synthesized using a two-step solution-system method. Field emission scanning electron microscope (FE-SEM) results show that there were a large number of copper oxide (CuO) nano-particles (NPs) deposited onto the ZnO nano-array surfaces to form spike-shaped structures. The covered CuO NPs exhibited improved photocatalytic properties over pure ZnO nano-arrays under UV irradiation, and the possible photocatalytic mechanism of the CuO/ZnO nano-heterojunction was discussed in detail.

  • 加载中
    1. [1]

      (1) Zhang, C. H.; Wang, G. F.; Liu, M.; Feng, Y. H.; Zhang, Z. D.; Fang, B. Electrochim. Acta 2010, 55 (8), 2835. doi: 10.1016/j.electacta.2009.12.068

    2. [2]

      (2) Jiang, C. Y.; Sun, X.W.; Lo, G. Q.; Kwong, D. L. Appl. Phys. Lett. 2007, 90 (26), 263501. doi: 10.1063/1.2751588

    3. [3]

      (3) Zhang, Y. Z.; Liu, Y. P.; Wu, L. H.; Li, H.; Han, L. Z.; Wang, B. C.; Xie, E. Q. Appl. Surf. Sci. 2009, 255 (9), 4801. doi: 10.1016/j.apsusc.2008.11.091

    4. [4]

      (4) Yang, P. D.; Yan, H. Q.; Mao, S.; Russo, R.; Johnson, J.; Saykally, R.; Morris, N.; Pham, J.; He, R. H.; Choi, H. J. Adv. Funct. Mater. 2002, 12 (5), 323. doi: 10.1002/1616-3028 (20020517)12:5<323::AID-ADFM323>3.0.CO;2-G

    5. [5]

      (5) Liu, C. H.; Zapien, J. A.; Yao, Y.; Meng, X. M.; Lee, C. S.; Fan, S. S.; Lifshitz, Y.; Lee, S. T. Adv. Mater. 2003, 15 (10), 838. doi: 10.1002/adma.200304430

    6. [6]

      (6) Lee, C. J.; Lee, T. J.; Lyu, S. C.; Zhang, Y.; Ruh, H.; Lee, H. J. Appl. Phys. Lett. 2002, 81 (19), 3648. doi: 10.1063/1.1518810

    7. [7]

      (7) Zhu, S. B.; Chen, X. N.; Zuo, F. B.; Jiang, M.; Zhou, Z.W. J. Solid State Chem. 2013, 197, 69. doi: 10.1016/j.jssc.2012.09.001

    8. [8]

      (8) Kuo, T. J.; Lin, C. N.; Kuo, C. L.; Huang, M. H. Chem. Mater. 2007, 19 (21), 5143. doi: 10.1021/cm071568a

    9. [9]

      (9) Zhai, X. H.; Long, H. J.; Dong, J. Z.; Cao, Y. A. Acta Phys. -Chim. Sin. 2010, 26 (3), 663. [翟晓辉, 龙绘锦, 董江舟, 曹亚安. 物理化学学报, 2010, 26 (3), 663.] doi: 10.3866/PKU.WHXB20100317

    10. [10]

      (10) Elias, J.; Lévy-Clément, C.; Bechelany, M.; Michler, J.; Wang, G.; Wang, Z.; Philippe, L. Adv. Mater. 2010, 22 (14), 1607. doi: 10.1002/adma.200903098

    11. [11]

      (11) Lyu, S. C.; Zhang, Y.; Lee, C. J.; Ruh, H.; Lee, H. J. Chemistry of Materials 2003, 15 (17), 3294. doi: 10.1021/cm020465j

    12. [12]

      (12) Kang, S.W.; Mohanta, S. K.; Kim, Y. Y.; Cho, H. K. Crystal Growth and Design 2008, 8 (5), 1458. doi: 10.1021/cg701216f

    13. [13]

      (13) Sun, Y.; Fuge, G. M.; Ashfold, M. N. R. Chemical Physics Letters 2004, 396 (1), 21.

    14. [14]

      (14) Gao, Y. F.; Nagai, M.; Chang, T. C.; Shyue, J. J. Crystal Growth and Design 2007, 7 (12), 2467. doi: 10.1021/cg060934k

    15. [15]

      (15) Liu, B.; Zeng, H C. Journal of the American Chemical Society 2003, 125 (15), 4430. doi: 10.1021/ja0299452

    16. [16]

      (16) Kumar, P. S.; Raj, A. D.; Mangalaraj, D.; Nataraj, D. Applied Surface Science 2008, 255 (5), 2382. doi: 10.1016/j.apsusc.2008.07.136

    17. [17]

      (17) Liu, Z. Y.; Bai, H.W.; Sun, D. D. Int. J. Photoenergy 2011, 2012.

    18. [18]

      (18) Yan, W. P.; Wang, D. J.; Chen, L. P.; Lu, Y. C.; Xie, T. F.; Lin, Y. H. Acta Phys. -Chim. Sin. 2013, 29 (5), 1021. [闫伟平, 王德军, 陈礼平, 卢永春, 谢腾峰, 林艳红. 物理化学学报, 2013, 29 (5), 1021.] doi: 10.3866/PKU.WHXB201303043

    19. [19]

      (19) Zhang, Q. B.; Feng, Z. F.; Han, N. N.; Lin, L. L.; Zhou, J. Z.; Lin, Z. H. Acta Phys. -Chim. Sin. 2010, 26 (11), 2927. [张桥保, 冯增芳, 韩楠楠, 林玲玲, 周剑章, 林仲华. 物理化学学报, 2010, 26 (11), 2927.] doi: 10.3866/PKU.WHXB20101113

    20. [20]

      (20) Wang, J.; Fan, X. M.; Wu, D. Z.; Dai, J.; Liu, H. R.; Zhou, Z.W. Appl. Surf. Sci. 2011, 258 (5), 1797. doi: 10.1016/j.apsusc.2011.10.048

    21. [21]

      (21) Koffyberg, F. P.; Benko, F. A. J. Appl. Phys. 1982, 53 (2), 1173. doi: 10.1063/1.330567

    22. [22]

      (22) Wang, L.; Han, K.; Song, G.; Yang, X.; Tao, M. Characterization of Electro-Deposited CuO as a Low-Cost Material for High-Efficiency Solar Cells. In Photovoltaic Energy Conversion; the 2006 IEEE 4thWorld Conference, Singapore, 2006; IEEE, 2006, 1, 130-133.

    23. [23]

      (23) Rai, A. K.; Anh, L. T.; Gim, J.; Mathew, V.; Kang, J.; Paul, B. J.; Singh, N. K.; Song, J.; Kim, J. J. Power Sources 2013, 244, 435. doi: 10.1016/j.jpowsour.2012.11.112

    24. [24]

      (24) Nezamzadeh-Ejhieh, A.; Karimi-Shamsabadi, M. Chem. Eng. J. 2013, 228, 631. doi: 10.1016/j.cej.2013.05.035

    25. [25]

      (25) Steinhauer, S.; Brunet, E.; Maier, T.; Mutinati, G. C.; Kock, A.; Freudenberg, O.; Gspan, C.; Grogger, W.; Neuhold, A.; Resel, R. Sensor Actuat. B-Chem. 2013, 187, 50. doi: 10.1016/j.snb.2012.09.034

    26. [26]

      (26) Anandan, S.; Wen, X. G.; Yang, S. H. Mater. Chem. Phys. 2005, 93 (1), 35. doi: 10.1016/j.matchemphys.2005.02.002

    27. [27]

      (27) Kim, J.; Kim, W.; Yong, K. J. Phys. Chem. C 2012, 116 (29), 15682. doi: 10.1021/jp302129j

    28. [28]

      (28) Kargar, A.; Jing, Y.; Kim, S. J.; Riley, C. T.; Pan, X. Q.; Wang, D. L. ACS Nano 2013, 7 (12), 11112. doi: 10.1021/nn404838n

    29. [29]

      (29) Jung, S.; Yong, K. Chem. Commun. 2011, 47 (9), 2643. doi: 10.1039/c0cc04985a

    30. [30]

      (30) Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D. Nat. Mater. 2005, 4 (6), 455. doi: 10.1038/nmat1387

    31. [31]

      (31) ldie, W. Plating 1964, 51 (11), 1069.

    32. [32]

      (32) Jung, J.; Myoung, J.; Lim, S. Thin Solid Films 2012, 520 (17), 5779. doi: 10.1016/j.tsf.2012.04.052

    33. [33]

      (33) Zhu, K. X.; Wang, W. J.; Chen, X. L.; Liu, J.; Song, B.; Jiang, L. B.; Guo, J. G.; Cheng, J. Y. J. Alloy. Compd. 2011, 509 (24), 6942. doi: 10.1016/j.jallcom.2011.04.007

    34. [34]

      (34) Chen, Z. T.; Gao, L. J. Cryst. Growth 2006, 293 (2), 522. doi: 10.1016/j.jcrysgro.2006.05.082

    35. [35]

      (35) Lee, Y. L.; Zhang, Y.; Ng, S. L. G.; Kartawidja, F. C.; Wang, J. J. Am. Ceram. Soc. 2009, 92 (9), 1940. doi: 10.1111/jace.2009.92.issue-9

    36. [36]

      (36) Wang, Z. L. Mater. Today 2004, 7 (6), 26. doi: 10.1016/S1369-7021(04)00286-X

    37. [37]

      (37) Vayssieres, L.; Keis, K.; Lindquist, S. E.; Hagfeldt, A. J. Phys. Chem. B 2001, 105 (17), 3350. doi: 10.1021/jp010026s

    38. [38]

      (38) Pankove, J. I. Optical Process in Semiconductor; Dover Publications: New York, 2012.

    39. [39]

      (39) Wang, B. L.; Zhao, J. J.; Jia, J. M.; Shi, D. N.; Wan, J. G.; Wang, G. H. Appl. Phys. Lett. 2008, 93 (2), 021918. doi: 10.1063/1.2951617

    40. [40]

      (40) Schmidt, T. M.; Miwa, R. H. Nanotechnology 2009, 20 (21), 215202. doi: 10.1088/0957-4484/20/21/215202

    41. [41]

      (41) Zheng, J.; Jiang, Z. Y.; Kuang, Q.; Xie, Z. X.; Huang, R. B.; Zheng, L. S. J. Solid State Chem. 2009, 182 (1), 115. doi: 10.1016/j.jssc.2008.10.009

    42. [42]

      (42) Ai, Z. H.; Zhang, L. Z.; Lee, S. C.; Ho, W. K. J. Phys. Chem. C 2009, 113 (49), 20896. doi: 10.1021/jp9083647

    43. [43]

      (43) Bor hain, K.; Murase, N.; Mahamuni, S. J. Appl. Phys. 2002, 92 (3), 1292. doi: 10.1063/1.1491020

    44. [44]

      (44) Li, B. X.; Wang, Y. F. Superlattice Microst. 2010, 47 (5), 615. doi: 10.1016/j.spmi.2010.02.005

    45. [45]

      (45) Sakai, Y.; Ninomiya, S.; Hiraoka, K. Surf. Int. Anal. 2012, 44 (8), 938. doi: 10.1002/sia.4843

    46. [46]

      (46) Capece, F. M.; Castro, V. D.; Furlani, C.; Mattogno, G. J. Electron. Spectrosc. 1982, 27 (2), 119. doi: 10.1016/0368-2048(82)85058-5

    47. [47]

      (47) Wan, Y.; Zhang, Y. D.; Wang, X. L.; Wang, Q. Electrochem. Commun. 2013, 36, 99. doi: 10.1016/j.elecom.2013.09.026

    48. [48]

      (48) Xiang, F. M.; Wu, J.; Liu, L.; Huang, T.; Wang, Y.; Chen, C.; Peng, Y.; Jiang, C. X.; Zhou, Z.W. Polym. Adv. Technol. 2011, 22 (12), 2533. doi: 10.1002/pat.v22.12

    49. [49]

      (49) Saravanan, R.; Karthikeyan, S.; Gupta, V. K.; Sekaran, G.; Narayanan, V.; Stephen, A. Mater. Sci. Eng. C 2013, 33 (1), 91. doi: 10.1016/j.msec.2012.08.011

    50. [50]

      (50) Serpone, N.; Maruthamuthu, P.; Pichat, P.; Pelizzetti, E.; Hidaka, H. J. Photochem. Photobiol. A 1995, 85 (3), 247. doi: 10.1016/1010-6030(94)03906-B

    51. [51]

      (51) Wei, S. Q.; Chen, Y. Y.; Ma, Y. Y.; Shao, Z. C. J. Mol. Catal. AChem. 2010, 331 (1), 112.

    52. [52]

      (52) Li, J.; Wang, J.; Huang, L.; Lu, G. D. Photochem. Photobiol. Sci. 2010, 9 (1), 39. doi: 10.1039/b9pp00084d

    53. [53]

      (53) Chandrinou, C.; Boukos, N.; Stogios, C.; Travlos, A. Microelectron. J. 2009, 40 (2), 296. doi: 10.1016/j.mejo.2008.07.024

    54. [54]

      (54) Greene, L. E.; Law, M.; ldberger, J.; Kim, F.; Johnson, J. C.; Zhang, Y. F.; Saykally, R. J.; Yang, P. D. Angew. Chem. Int. Edit. 2003, 42 (26), 3031. doi: 10.1002/anie.200351461


  • 加载中
    1. [1]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    2. [2]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    3. [3]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    4. [4]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    5. [5]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    6. [6]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    9. [9]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    10. [10]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    11. [11]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    12. [12]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    13. [13]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    14. [14]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    15. [15]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    16. [16]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    19. [19]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    20. [20]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

Metrics
  • PDF Downloads(428)
  • Abstract views(564)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return