Citation: WANG Meng, PAN Xu, DAI Song-Yuan, CHEN Jian. Influence of Intermolecular Interactions on the Mesogenic Properties of Imidazolium Salts[J]. Acta Physico-Chimica Sinica, ;2015, 31(4): 653-659. doi: 10.3866/PKU.WHXB201502031 shu

Influence of Intermolecular Interactions on the Mesogenic Properties of Imidazolium Salts

  • Received Date: 21 November 2014
    Available Online: 3 February 2015

    Fund Project: 国家重点基础研究发展规划项目(973) (2011CBA00700) (973) (2011CBA00700) 国家高技术研究发展计划项目(863) (2011AA050510) (863) (2011AA050510) 国家自然科学基金(21103197,21273242) (21103197,21273242)中国博士后科学基金(2013M540526)资助 (2013M540526)

  • Aseries of imidazolium salt-based ionic liquid crystals with a smectic A(SmA) phase are synthesized by altering the substituents attached to the 1-position (N1) and 3-position (N3) of the imidazolium ring, and anions. The mesogenic properties of the imidazolium salts, including mesophase temperature range and structural properties, are studied by differential scanning calorimetry, small-angle X-ray diffraction, and single crystal diffraction. The anisotropic ion conductivities of several ionic liquid crystals are also measured. It is found that substituents attached to N1 or N3 and the anions influence the van der Waals interactions and hydrogen bond, which results in a significant effect on the mesogenic properties of the imidazolium salts. Moreover, when a vinyl group is attached to the N3 position, π-π stacking interactions form between adjacent layers. This not only benefits the formation of a mesophase but also results in the biggest layer spacing and lowest anisotropic ion conductivities for imidazolium tetrafluoroborates. These results suggest that all intermolecular interactions should be taken into account when regulating the mesogenic properties of ionic liquid crystals.

  • 加载中
    1. [1]

      (1) Binnemans, K. Chem. Rev. 2005, 105, 4148. doi: 10.1021/cr0400919

    2. [2]

      (2) Zhao, X. Y.; Cao, Y. R.; Cao, G. R.; Xiao, R. J. Acta Phys. -Chim. Sin. 2012, 28, 1411. [赵学艳, 曹宇容, 曹桂荣, 肖瑞杰. 物理化学学报, 2012, 28, 1411.] doi: 10.3866/PKU.WHXB201203262

    3. [3]

      (3) Shi, C.W.; Ge, Q.; Qiu, Z. G.; Li, B.; Han, S. K. Acta Phys. -Chim. Sin. 2007, 23, 1473. [史成武, 葛茜, 邱治国, 李兵, 韩世奎. 物理化学学报, 2007, 23, 1473.] doi: 10.3866/PKU.WHXB20070932

    4. [4]

      (4) Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Grätzel, M. J. Phys. Chem. B 2003, 107, 13280. doi: 10.1021/jp0355399

    5. [5]

      (5) Trilla, M.; Pleixats, R.; Parella, T.; Blanc, C.; Dieudonne, P.; Guari, Y.; Man, M.W. C. Langmuir 2008, 24, 259. doi: 10.1021/la702305t

    6. [6]

      (6) Yoshio, M.; Mukai, T.; Kanie, K.; Yoshizawa, M.; Ohno, H.; Kato, T. Adv. Mater. 2002, 14, 351. doi: 10.1002/1521-4095 (20020304)14:5<351::AID-ADMA351>3.0.CO;2-D

    7. [7]

      (7) Yoshio, M.; Mukai, T.; Kanie, K.; Yoshizawa, M.; Ohno, H.; Kato, T. Chem. Lett. 2002, 320.

    8. [8]

      (8) Faul, C. F. J.; Antonietti, M. Adv. Mater. 2003, 15, 673.

    9. [9]

      (9) Lee, C. K.; Huang, H.W.; Lin, I. J. B. Chem. Commun. 2000, 1911.

    10. [10]

      (10) Wang, M.; Pan, X.; Dai, S. Y. The Application of Liquid Crystal Based Electrolyte in Dye-Sensitized Solar Cells. In Proceedings of the 11th China Solar Photovoltaic Conference and Exhibition, The 11th China Solar Photovoltaic Conference and Exhibition, Nanjing, 2010;Wei, Q. D., Yuan, Z. L., Eds.; Nanjing: Southeast University Press, 2010; pp 933-940. [王猛, 潘旭, 戴松元. 离子液晶电解质在染料敏化太阳电池中的应用. 第十一届中国光伏大会即展览会会议论文集, 第十一届中国光伏大会即展览会, 南京, 2010; 魏启东, 袁竹林编; 南京: 东南大学出版社, 2010: 933-940.]

    11. [11]

      (11) Pan, X; Dai, S. Y.; Wang, K. J.; Shi, C.W.; Guo, L. Acta Phys. -Chim. Sin. 2005, 21, 697. [潘旭, 戴松元, 王孔嘉, 史成武, 郭力. 物理化学学报, 2005, 21, 697.] doi: 10.3866/PKU.WHXB20050624

    12. [12]

      (12) Lin, H.; Hao, F.; Zhang, J.; Li, J. B. J. Power Sources 2011, 196, 1645. doi: 10.1016/j.jpowsour.2010.09.013

    13. [13]

      (13) Yamanaka, N.; Kawano, R.; Kubo, W.; Kitamura, T.; Wada, Y.; Watanabe, M.; Yanagida, S. Chem. Commun. 2005, 740.

    14. [14]

      (14) Xu, F.; Matsumoto, K.; Hagiwara, R. Chem. Eur. J. 2010, 16, 12970. doi: 10.1002/chem.v16.43

    15. [15]

      (15) Yamanaka, N.; Kawano, R.; Kubo, W.; Masaki, N.; Kitamura, T.; Wada, Y.; Watanabe, M.; Yanagida, S. J. Phys. Chem. B 2007, 111, 4763. doi: 10.1021/jp0671446

    16. [16]

      (16) Luo, S. C.; Sun, S.W.; Deorukhkar, A. R.; Lu, J. T.; Bhattacharyya, A.; Lin, I. J. B. J. Mater. Chem. 2011, 21, 1866. doi: 10.1039/c0jm02875d

    17. [17]

      (17) Wang, M.; Pan, X.; Xiao, S. F.; Zhang, C. N.; Li, W. X.; Dai, S. Y. J. Mater. Chem. 2012, 22, 2299. doi: 10.1039/c1jm14790k

    18. [18]

      (18) rdon, C. M.; Holbrey, J. D.; Kennedy, A. R.; Seddon, K. R. J. Mater. Chem. 1998, 8, 2627. doi: 10.1039/a806169f

    19. [19]

      (19) Fei, Z. F.; Kuang, D. B.; Zhao, D. B.; Klein, C.; Ang, W. H.; Zakeeruddin, S. M.; Grätzel, M.; Dyson, P. J. Inorg. Chem. 2006, 45, 10407. doi: 10.1021/ic061232n

    20. [20]

      (20) Bradley, A. E.; Hardacre, C.; Holbrey, J. D.; Johnston, S.; McMath, S. E. J.; Nieuwenhuyzen, M. Chem. Mater. 2002, 14, 629. doi: 10.1021/cm010542v

    21. [21]

      (21) Hitchcock, P. B.; Seddon, K. R.; Welton, T. J. Chem. Soc. Dalton Trans. 1993, 2639.

    22. [22]

      (22) Li, L. B.; Groenewold, J.; Picken, S. J. Chem. Mater. 2005, 17, 250. doi: 10.1021/cm048811f

    23. [23]

      (23) Downard, A.; Earle, M. J.; Hardacre, C.; McMath, S. E. J.; Nieuwenhuyzen, M.; Teat, S. J. Chem. Mater. 2004, 16, 43. doi: 10.1021/cm034344a

    24. [24]

      (24) Mukai, T.; Yoshio, M.; Kato, T.; Yoshizawa, M.; Ohno, H. Chem. Commun. 2005, 1333.

    25. [25]

      (25) Bhattacharya, B.; Lee, J. Y.; Geng, J. X.; Jung, H. T.; Park, J. K. Langmuir 2009, 25, 3276. doi: 10.1021/la8029177

    26. [26]

      (26) Wang, M.; Yin, X.; Xiao, X. R.; Zhou, X.W.; Yang, Z. Z.; Li, X. P.; Lin, Y. J. Photochem. Photobiol. A: Chem. 2008, 194, 20. doi: 10.1016/j.jphotochem.2007.07.009


  • 加载中
    1. [1]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    2. [2]

      Zimo YangYan TongYongbo LiuQianlong LiuZhihao NiYuna HeYu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577

    3. [3]

      Xiongbo SongJinwen XiaoJuan WuLi SunLong Chen . Decellularized amniotic membrane promotes the anti-inflammatory response of macrophages via PI3K/AKT/HIF-1α pathway. Chinese Chemical Letters, 2025, 36(1): 109844-. doi: 10.1016/j.cclet.2024.109844

    4. [4]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    5. [5]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    6. [6]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    7. [7]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    8. [8]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    11. [11]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    12. [12]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    13. [13]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    14. [14]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    15. [15]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    16. [16]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    17. [17]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    18. [18]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    19. [19]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    20. [20]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

Metrics
  • PDF Downloads(284)
  • Abstract views(665)
  • HTML views(54)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return