Citation: LI Yang, XIE Hua-Qing, LI Jing. Hydrothermal Synthesis of Al-Doped α-MnO2 Nanotubes and Their Electrochemical Performance for Supercapacitors[J]. Acta Physico-Chimica Sinica, ;2015, 31(4): 693-699. doi: 10.3866/PKU.WHXB201502021
-
α-MnO2 and Al-doped α-MnO2 were synthesized via a hydrothermal method. The morphologies, structures, and electrochemical performances of as-synthesized un-doped and doped α-MnO2 were studied. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) show that these un-doped and doped α-MnO2 are nanotube shaped. The band gaps of α-MnO2 are investigated by ultraviolet-visible absorption spectroscopy, which indicates that the band gap of α-MnO2 decreases upon Al doping. The electrochemical performances of un-doped and doped α-MnO2 as electrode materials for supercapacitors were measured by cyclic voltammetry (CV) and galvanostatical charge/discharge tests. The specific capacitances of un-doped and Al-doped α-MnO2 respectively reach 204.8 and 228.8 F·g-1under a current density of 50 mA·g-1. It was discovered that the electrochemical impedance of Al-doped α-MnO2 was decreased by Al doping analyzed using electrochemical impedance spectra (EIS), which provides a beneficial increase to its electrochemical specific capacitance. Enhanced specific capacitance and preferable cycling stability (up to 1000 cycles) for Al-doped α-MnO2 mean that these systems are favorable prospects for application in supercapacitors.
-
Keywords:
-
α-MnO2
, - Al doping,
- Nanotube,
- Supercapacitor,
- Electrochemical capacitor
-
-
-
[1]
(1) Yao, W.; Wang, J.; Li, H.; Lu, Y. J. Power Sources 2014, 247, 824. doi: 10.1016/j.jpowsour.2013.09.039
-
[2]
(2) Ghimbeu, C. M.; Malak-Polaczyk, A.; Frackowiak, E.; Vix- Guterl, C. J. Appl. Electrochem. 2014, 44, 123. doi: 10.1007/s10800-013-0614-6
-
[3]
(3) Zhu, G.; Deng, L.; Wang, J.; Kang, L.; Liu, Z. H. Colloids Surfaces A 2013, 434, 42. doi: 10.1016/j.colsurfa.2013.05.008
-
[4]
(4) Jiang, H.; Dai, Y.; Hu, Y.; Chen, W.; Li, C. ACS Sustain. Chem. Eng. 2014, 2, 70. doi: 10.1021/sc400313y
-
[5]
(5) Azhagan, M. V. K.; Vaishampayan, M. V.; Shelke, M. V. J. Mater. Chem. A 2014, 2, 2152. doi: 10.1039/C3TA14076H
-
[6]
(6) Zolfaghari, A.; Naderi, H. R.; Mortaheb, H. R. J. Electroanal. Chem. 2013, 697, 60. doi: 10.1016/j.jelechem.2013.03.012
-
[7]
(7) Yu, M.; Sun, H.; Sun, X.; Lu, F.; Wang, G.; Hu, T.; Qiu, H.; Lian, J. Int. J. Electrochem. Sci. 2013, 8, 2313.
-
[8]
(8) Li, L.; He, Y. Q.; Chu, X. F.; Li, Y. M.; Sun, F. F.; Huang, H. Z. Acta Phys. -Chim. Sin. 2013, 29, 1681. [李乐, 贺蕴秋, 储晓菲, 李一鸣, 孙芳芳, 黄河洲. 物理化学学报, 2013, 29, 1681.] doi: 10.3866/PKU.WHXB201305223
-
[9]
(9) Hashem, A. M.; Abuzeid, H. M.; Mikhailova, D.; Ehrenberg, H.; Mauger, A.; Julien, C. M. J. Mater. Sci. 2012, 47, 2479. doi: 10.1007/s10853-011-6071-x
-
[10]
(10) Wang, G.; Shao, G.; Du, J.; Zhang, Y.; Ma, Z. Mater. Chem. Phys. 2013, 138, 108. doi: 10.1016/j.matchemphys.2012.11.024
-
[11]
(11) Dubal, D. P.; Lokhande, C. D. Ceram. Int. 2013, 39, 415. doi: 10.1016/j.ceramint.2012.06.042
-
[12]
(12) Hashem, A. M.; Abuzeid, H. M.; Narayanan, N.; Ehrenberg, H.; Julien, C. M. Mater. Chem. Phys. 2011, 130, 33. doi: 10.1016/j.matchemphys.2011.04.074
-
[13]
(13) Ryu, W. H.; Han, D.W.; Kim, W. K.; Kwon, H. S. J. Nanopart. Res. 2011, 13, 4777. doi: 10.1007/s11051-011-0448-2
-
[14]
(14) Shanthi, S.; Ravi, S. Int. J. Chem. Tech. Res. 2014, 6, 2066.
-
[15]
(15) Wang, S.; Liu, Q.; Yu, J.; Zeng, J. Int. J. Electrochem. Sci. 2012, 7, 1242.
-
[16]
(16) Kunkalekar, R. K.; Salker, A. V. React. Kinet. Mech. Catal. 2012, 106, 395. doi: 10.1007/s11144-012-0443-3
-
[17]
(17) Hashem, A. M.; Abdel-Latif, A. M.; Abuzeid, H. M.; Abbas, H. M.; Ehrenberg, H.; Farag, R. S.; Mauger, A.; Julien, C. M. J. Alloy. Compd. 2011, 509, 9669. doi: 10.1016/j.jallcom.2011.07.075
-
[18]
(18) Malankar, H.; Umare, S. S.; Singh, K. Mater. Lett. 2009, 63, 2016. doi: 10.1016/j.matlet.2009.06.044
-
[19]
(19) Jung, K. N.; Riaz, A.; Lee, S. B.; Lim, T. H.; Park, S. J.; Song, R. H.; Yoon, S.; Shin, K. H.; Lee, J.W. J. Power Sources 2013, 244, 328. doi: 10.1016/j.jpowsour.2013.01.028
-
[20]
(20) Zhang, Y.; Liu, H.; Zhu, Z.; Wong, K.W.; Mi, R.; Mei, J.; Lau, W. M. Electrochim. Acta 2013, 108, 465. doi: 10.1016/j.electacta.2013.07.002
-
[21]
(21) Song, Z.; Liu, W.; Zhao, M.; Zhang, Y.; Liu, G.; Yu, C.; Qiu, J. J. Alloy. Compd. 2013, 560, 151. doi: 10.1016/j.jallcom.2013.01.117
-
[22]
(22) Wang, G. S.; He, S.; Luo, X.; Wen, B.; Lu, M. M.; Guo, L.; Cao, M. S. RSC Adv. 2013, 3, 18009. doi: 10.1039/c3ra42412j
-
[23]
(23) Zhou, M.; Zhang, X.; Wang, L.; Wei, J.; Zhu, K.; Feng, B. J. Nanosci. Nanotechnol. 2013, 13, 904. doi: 10.1166/jnn.2013.5958
-
[24]
(24) Shan, J.; Zhu, Y.; Zhang, S.; Zhu, T.; Rouvimov, S.; Tao, F. J. Phys. Chem. C 2013, 117, 8329. doi: 10.1021/jp4018103
-
[25]
(25) Wu, Y.; Lu, Y.; Song, C.; Ma, Z.; Xing, S.; Gao, Y. Catal. Today 2013, 201, 32. doi: 10.1016/j.cattod.2012.04.032
-
[26]
(26) Umek, P.; Gloter, A.; Pregelj, M.; Dominko, R.; Ja dic, M.; Jaglicic, Z.; Zimina, A.; Brzhezinskaya, M.; Potocnik, A.; Filipic, C.; Levstik, A.; Arcon, D. J. Phys. Chem. C 2009, 113, 14798. doi: 10.1021/jp9050319
-
[27]
(27) Sakai, N.; Ebina, Y.; Takada, K.; Sasaki, T. J. Phys. Chem. B 2005, 109, 9651. doi: 10.1021/jp0500485
-
[28]
(28) Kang, J. L.; Hirata, A. H.; Kang, L. J.; Zhang, X. M.; Hou, Y.; Chen, L. Y.; Li, C.; Fujita, T.; Atagi, K.; Chen, M.W. Angew. Chem. Int. Edit. 2013, 52, 1664. doi: 10.1002/anie.v52.6
-
[1]
-
-
[1]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[2]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[3]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[4]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[5]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[6]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[7]
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
-
[8]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[9]
Lumin Zheng , Ying Bai , Chuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589
-
[10]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[11]
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
-
[12]
Yiqian Jiang , Zihan Yang , Xiuru Bi , Nan Yao , Peiqing Zhao , Xu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331
-
[13]
Wen LUO , Lin JIN , Palanisamy Kannan , Jinle HOU , Peng HUO , Jinzhong YAO , Peng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418
-
[14]
Zhengli Hu , Jia Wang , Yi-Lun Ying , Shaochuang Liu , Hui Ma , Wenwei Zhang , Jianrong Zhang , Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072
-
[15]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[16]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[17]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[18]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[19]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[20]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[1]
Metrics
- PDF Downloads(355)
- Abstract views(950)
- HTML views(87)