Citation: LIANG Chu, LIANG Sheng, XIA Yang, HUANG Hui, GAN Yong-Ping, TAO Xin-Yong, ZHANG Wen-Kui. Progress in the Mg(NH2)2-2LiH Material for Hydrogen Storage[J]. Acta Physico-Chimica Sinica, ;2015, 31(4): 627-635. doi: 10.3866/PKU.WHXB201501282
-
Mg(NH2)2-2LiH composite is one of the most promising high-capacity hydrogen storage materials developed in recent years. Research on Mg(NH2)2-2LiH material for hydrogen storage is of considerable interest because of its favorable thermodynamic properties, high reversible hydrogen capacity, relatively low operating temperatures, and od cycling stability for dehydrogenation/hydrogenation. In this review, the recent progress in the hydrogen storage properties of Mg(NH2)2-2LiH material was systematically summarized. The focus is on the effect of material composites, crystal structures, particle (grain) sizes, and catalysts on the hydrogen storage properties of the Mg(NH2)2-2LiH material, and their reaction mechanisms for hydrogen storage. The challenges in and direction for further improving the hydrogen storage properties of the Mg(NH2)2-2LiH material are also pointed out.
-
-
[1]
(1) Schlapbach, L.; Züttle, A. Nature 2001, 414, 353. doi: 10.1038/35104634
-
[2]
(2) Vanvucht, J. H.; Kuijpers, F. A.; Bruning, H. C. A. Philips Research Reports 1970, 25, 133.
-
[3]
(3) Reilly, J. J.; Wiswall, R. H. Inorg. Chem. 1968, 7, 2254. doi: 10.1021/ic50069a016
-
[4]
(4) Xiao, X. Z.; Chen, L. X.; Fan, X. L.; Ge, H.W.; Li, S. Q.; Ying, Z.; Wang, X. H.; Chen, C. P. Acta Phys. -Chim. Sin. 2008, 24, 423. [肖学章, 陈立新, 范修林, 葛红卫, 李寿权, 应窕, 王新华, 陈长聘. 物理化学学报, 2008, 24, 423.] doi: 10.3866/PKU.WHXB20080312
-
[5]
(5) Liang, C.; Li, G. X.; Lan, Z. Q.; Liu, Y. X.; Wei, W. L.; Guo, J. Acta Phys. -Chim. Sin. 2008, 24, 686. [梁初, 黎光旭, 蓝志强, 刘奕新, 韦文楼, 郭进. 物理化学学报, 2008, 24, 686.] doi: 10.3866/PKU.WHXB20080424
-
[6]
(6) Liu, Y. F.; Liang, C.; Zhou, H.; Gao, M. X.; Pan, H. G.; Wang, Q. D. Chem. Commun. 2011, 47, 1740. doi: 10.1039/c0cc03264f
-
[7]
(7) Bogdanovi?, B.; Schwickardi, M. J. Alloy. Compd. 1997, 253- 254, 1.
-
[8]
(8) Lan, Z. Q.; Xiao, X.; Su, X.; Chen, J. S.; Guo, J. Acta Phys. -Chim. Sin. 2012, 28, 1877. [蓝志强, 肖潇, 苏鑫, 陈捷狮, 郭进. 物理化学学报, 2012, 28, 1877.] doi: 10.3866/PKU.WHXB201205281
-
[9]
(9) Liang, C.; Liu, Y. F.; Luo, K.; Li, B.; Gao, M. X.; Pan, H. G.; Wang, Q. D. Chem. Eur. J. 2010, 16, 693. doi: 10.1002/chem.v16:2
-
[10]
(10) Fang, F.; Li, Y. T.; Song, Y.; Zha, J.; Zhao, B.; Sun, D. L. Acta Phys. -Chim. Sin. 2011, 27, 1537. [方方, 李永涛, 宋云, 査俊, 赵斌, 孙大林. 物理化学学报, 2011, 27, 1537.] doi: 10.3866/PKU.WHXB20110617
-
[11]
(11) Zheng, S. Y.; Fang, F.; Zhou, G. Y.; Chen, G. R.; Ouyang, L. Z.; Zhu, M.; Sun, D. L. Chem. Mater. 2008, 20, 3954. doi: 10.1021/cm8002063
-
[12]
(12) Martinez-Franco, X. Z.; Ma, E.; Dornheim, M.; Klassen, T.; Bormanm, R. J. Alloy. Compd. 2005, 404 -406, 771.
-
[13]
(13) Balde, C. P.; Hereijgers, B. P. C.; Bitter, J. H.; de Jong, K. P. J. Am. Chem. Soc. 2008, 130, 6761. doi: 10.1021/ja710667v
-
[14]
(14) Mandal, T. K.; Gre ry, D. H. Annu. Rep. Prog. Chem. Sect. A 2009, 105, 21. doi: 10.1039/b818951j
-
[15]
(15) Li, J. H.; Liu, B. Z.; Han, S. M.; Hu, L.; Zhu, X. L.; Wang, M. Z. Acta Phys. -Chim. Sin. 2011, 27, 403. [李金华, 刘宝忠, 韩树民, 扈琳, 朱惜林, 王明智. 物理化学学报, 2011, 27, 403.] doi: 10.3866/PKU.WHXB20110206
-
[16]
(16) Vajo, J. J.; Skeith, S. L.; Mertens, F. J. Phys. Chem. B 2005, 109, 3719. doi: 10.1021/jp040769o
-
[17]
(17) Pinkerton, F. E.; Meisner, G. P.; Meyer, M. S.; Balogh, M. P.; Kundrat, M. D. J. Phys. Chem. B 2005, 109, 6.
-
[18]
(18) Gross, A. F.; Vajo, J. J.; Van Atta, S. L.; Olson, G. L. J. Phys. Chem. C 2008, 112, 5651. doi: 10.1021/jp711066t
-
[19]
(19) Gu, J.; Gao, M. X.; Pan, H. G.; Liu, Y. F.; Li, B.; Yang, Y. J.; Liang, C.; Fu, H. L.; Guo, Z. X. Energy Environ. Sci. 2013, 6, 847. doi: 10.1039/c2ee24121h
-
[20]
(20) Chen, J.; Zhu, M. Materials China 2009, 28 (5), 2. [陈军, 朱敏. 中国材料进展, 2009, 28 (5), 2.]
-
[21]
(21) Chen, P.; Xiong, Z. T.; Luo, J. Z.; Lin, J. Y.; Tan, K. L. Nature 2002, 420, 302. doi: 10.1038/nature01210
-
[22]
(22) Xiong, Z.; Hu, J.; Wu, G.; Chen, P.; Luo, W.; Gross, K.; Wang, J. J. Alloy. Compd. 2005, 398, 235. doi: 10.1016/j.jallcom.2005.02.010
-
[23]
(23) Luo, W. F. J. Alloy. Compd. 2004, 381, 284. doi: 10.1016/j.jallcom.2004.03.119
-
[24]
(24) Luo, W.; Rönnebro, E. J. J. Alloy. Compd. 2005, 404 -406, 392.
-
[25]
(25) Xiong, Z.; Wu, G.; Hu, J.; Chen, P. Adv. Mater. 2004, 16, 1522.
-
[26]
(26) Janot, R.; Eymery, J.; Tarascon, J. J. Power Sources 2007, 164, 496. doi: 10.1016/j.jpowsour.2006.11.046
-
[27]
(27) Markmaitree, T.; Osborn, W.; Shaw, L. L. J. Power Sources 2008, 180, 535. doi: 10.1016/j.jpowsour.2008.02.037
-
[28]
(28) Markmaitree, T.; Osborn, W.; Shaw, L. L. Int. J. Hydrog. Energy 2008, 33, 3915. doi: 10.1016/j.ijhydene.2007.10.052
-
[29]
(29) Luo, W.; Sickafoose, S. J. Alloy. Compd. 2006, 407, 274. doi: 10.1016/j.jallcom.2005.06.046
-
[30]
(30) Luo, W.; Stavila, V.; Klebanoff, L. E. Int. J. Hydrog. Energy 2012, 37, 6646. doi: 10.1016/j.ijhydene.2012.01.019
-
[31]
(31) Araujo, C. M.; Scheicher, R. H.; Ahuja, R. Appl. Phys. Lett. 2008, 92, 021907. doi: 10.1063/1.2830703
-
[32]
(32) Liu, Y. F.; Li, B.; Tu, F. F.; Liang, C.; Gao, M. X.; Pan, H. G.; Wang, Q. D. Dalton Trans. 2011, 40, 8179. doi: 10.1039/c1dt10108k
-
[33]
(33) Hu, J.; Liu, Y.; Wu, G.; Xiong, Z.; Chen, P. J. Phys. Chem. C 2007, 111, 18439. doi: 10.1021/jp075757s
-
[34]
(34) Sudik, A.; Yang, J.; Halliday, D.; Wolverton, C. J. Phys. Chem. C 2007, 111, 6568. doi: 10.1021/jp0683465
-
[35]
(35) Luo, W.; Stewart, K. J. Alloy. Compd. 2007, 440, 357. doi: 10.1016/j.jallcom.2006.09.057
-
[36]
(36) Liu, Y.; Hu, J.; Wu, G.; Xiong, Z.; Chen, P. J. Phys. Chem. C 2008, 112, 1293.
-
[37]
(37) Liang, C.; Liu, Y.; Gao, M.; Pan, H. J. Mater. Chem. A 2013, 1, 5031. doi: 10.1039/c3ta01071f
-
[38]
(38) Xiong, Z.; Wu, G.; Hu, J.; Chen, P.; Luo, W.; Wang, J. J. Alloy. Compd. 2006, 417, 190. doi: 10.1016/j.jallcom.2005.07.072
-
[39]
(39) Leng, H. Y.; Ichikawa, T.; Hino, S.; Hanada, N.; Isobe, S.; Fujii, H. J. Phys. Chem. B 2004, 108, 8763. doi: 10.1021/jp048002j
-
[40]
(40) Nakamori, Y.; Kitahara, G.; Miwa, K.; Towata, S.; Orimo, S. Appl. Phys. A 2005, 80, 1.
-
[41]
(41) Liu, Y.; Liang, C.; Wei, Z.; Jiang, Y.; Gao, M.; Pan, H.; Wang, Q. Phys. Chem. Chem. Phys. 2011, 12, 3108.
-
[42]
(42) Leng, H. Y.; Ichiwawa, T.; Fujii, H. J. Phys. Chem. B 2006, 110, 12964. doi: 10.1021/jp061120h
-
[43]
(43) Aoki, M.; Noritake, T.; Kitaharab, G.; Nakamorib, Y.; Towataa, S.; Orimoba, S. J. Alloy. Compd. 2007, 428, 307. doi: 10.1016/j.jallcom.2006.03.044
-
[44]
(44) Leng, H. Y.; Ichikawa, T.; Isobe, S.; Hino, S.; Hanada, N.; Fujii, H. J. Alloy. Compd. 2005, 404-406, 443.
-
[45]
(45) Aoki, M.; Noritake, T.; Nakamori, Y.; Towata, S.; Orimo, S. J. Alloy. Compd. 2007, 446 -447, 328.
-
[46]
(46) Hu, J. J.; Fichtner, M. Chem. Mater. 2009, 21, 3485. doi: 10.1021/cm901362v
-
[47]
(47) Luo, S.; Flanagan, T. B.; Luo, W. J. Alloy. Compd. 2007, 440, L13.
-
[48]
(48) Sun, F.; Yan, M.; Ye, J.; Liu, X.; Jiang, L. J. Alloy. Compd. 2014, 616, 47. doi: 10.1016/j.jallcom.2014.07.128
-
[49]
(49) Sun, F.; Yan, M.; Liu, X.; Ye, J.; Li, Z.; Wang, S.; Jiang, L. Int. J. Hydrog. Energy 2014, 39, 9288. doi: 10.1016/j.ijhydene.2014.04.055
-
[50]
(50) Rijssenbeek, J.; Gao, Y.; Hanson, J.; Huang, Q.; Jones, C.; Toby, B. J. Alloy. Compd. 2008, 454, 233. doi: 10.1016/j.jallcom.2006.12.008
-
[51]
(51) Liang, C.; Gao, M.; Pan, H.; Liu, Y. Appl. Phys. Lett. 2014, 105, 083909. doi: 10.1063/1.4894378
-
[52]
(52) Liang, C.; Gao, M.; Pan, H.; Liu, Y.; Yan, M. Int. J. Hydrog. Energy 2014, 39, 17754. doi: 10.1016/j.ijhydene.2014.09.013
-
[53]
(53) Xie, L.; Liu, Y.; Li, G.; Li, X. J. Phys. Chem. C 2009, 113, 14523. doi: 10.1021/jp904346x
-
[54]
(54) Barison, S.; Agresti, F.; Russo, S. L.; Maddalena, A.; Palade, P.; Principi, G.; Torzo, G. J. Alloy. Compd. 2008, 459, 343. doi: 10.1016/j.jallcom.2007.04.278
-
[55]
(55) Liu, Y.; Zhong, K.; Luo, K.; Gao, M.; Pan, H.; Wang, Q. J. Am. Chem. Soc. 2009, 131, 1862. doi: 10.1021/ja806565t
-
[56]
(56) Wang, J.; Hu, J.; Liu, Y.; Xiong, Z.; Wu, G.; Pan, H.; Chen, P. J. Mater. Chem. 2009, 19, 2141. doi: 10.1039/b812653d
-
[57]
(57) Xia, G.; Tan, Y.; Li, D.; Guo, Z.; Liu, H.; Liu, Z.; Yu, X. Sci. Rep. 2014, 4, 6599. doi: 10.1038/srep06599
-
[58]
(58) Xia, G.; Li, D.; Chen, X.; Tan, Y.; Tang, Z.; Guo, Z.; Liu, H.; Liu, Z.; Yu, X. Adv. Mater. 2013, 25, 6238. doi: 10.1002/adma. v25.43
-
[59]
(59) Lohstroh, W.; Fichtner, M. J. Alloy. Compd. 2007, 446 -447, 332.
-
[60]
(60) Shahi, R. R.; Yadav, T. P.; Shaz, M. A.; Srivastva, O. N. Int. J. Hydrog. Energy 2010, 35, 238. doi: 10.1016/j.ijhydene.2009.10.029
-
[61]
(61) Chen, Y.; Wang, P.; Liu, C.; Cheng, H. Int. J. Hydrog. Energy 2007, 32, 1262. doi: 10.1016/j.ijhydene.2006.07.019
-
[62]
(62) Ma, L.; Wang, P.; Dai, H.; Cheng, H. J. Alloy. Compd. 2009, 468, L21.
-
[63]
(63) Liu, Y.; Hu, J.; Xiong, Z.; Wu, G.; Chen, P. J. Mater. Res. 2007, 22, 1339. doi: 10.1557/jmr.2007.0165
-
[64]
(64) Ma, L.; Fang, Z.; Dai, H.; Kang, X.; Liang, Y.; Wang, P.; Wang, P.; Cheng, H. J. Mater. Res. 2009, 24, 1936. doi: 10.1557/jmr.2009.0248
-
[65]
(65) Zhu, X.; Han, S.; Zhao, X.; Li, Y.; Liu, B. J. Rare Earths 2014, 32, 429. doi: 10.1016/S1002-0721(14)60089-2
-
[66]
(66) Demirocak, D. E.; Srinivasan, S. S.; Ram, M. K.; Kuhn, J. N.; Muralidharan, R.; Li, X.; swami, D. Y.; Stefannakos, E. K. Int. J. Hydrog. Energy 2013, 38, 10039. doi: 10.1016/j.ijhydene.2013.05.176
-
[67]
(67) Cao, H.; Zhang, Y.; Wang, J.; Xiong, Z.; Wu, G.; Qiu, J.; Chen, P. Dalton Trans. 2013, 42, 5524. doi: 10.1039/c3dt32165g
-
[68]
(68) Liang, C.; Liu, Y.; Jiang, Y.; Wei, Z.; Gao, M.; Pan, H.; Wang, Q. Phys. Chem. Chem. Phys. 2011, 13, 314. doi: 10.1039/c0cp00340a
-
[69]
(69) Hu, J.; Liu, Y.; Wu, G.; Xiong, Z.; Chua, Y. S.; Chen, P. Chem. Mater. 2008, 20, 4398. doi: 10.1021/cm800584x
-
[70]
(70) Hu, J.; Weidner, E.; Hoelzel, M.; Fichtner, M. Dalton Trans. 2010, 39, 9100. doi: 10.1039/c0dt00468e
-
[71]
(71) Zhang, X.; Li, Z.; Lv, F.; Li, H.; Mi, J.; Wang, S. Int. J. Hydrog. Energy 2010, 35, 7809. doi: 10.1016/j.ijhydene.2010.05.095
-
[72]
(72) Pan, H.; Shi, S.; Liu, Y.; Li, B.; Yang, Y.; Gao, M. Dalton Trans. 2013, 42, 3802. doi: 10.1039/c2dt32266h
-
[73]
(73) Li, B.; Liu, Y.; Gu, J.; Gao, M.; Pan, H. Chem. Asian J. 2013, 8, 374. doi: 10.1002/asia.201200938
-
[74]
(74) Liang, C.; Liu, Y.; Wei, Z.; Jiang, Y.; Wu, F.; Gao, M.; Pan, H. Int. J. Hydrog. Energy 2011, 36, 2137. doi: 10.1016/j.ijhydene.2010.11.068
-
[75]
(75) Yan, M.; Sun, F.; Liu, X.; Ye, J. Int. J. Hydrog. Energy 2014, 39, 19656. doi: 10.1016/j.ijhydene.2014.09.156
-
[76]
(76) Yan, M.; Sun, F.; Liu, X.; Ye, J.; Yuan, H.; Wang, S.; Jiang, L. J. Alloy. Compd. 2014, 603, 19. doi: 10.1016/j.jallcom.2014.03.054
-
[77]
(77) Wang, J.; Liu, T.; Wu, G.; Li, W.; Liu, Y.; Araújo, C. M.; Scheicher, R. H.; Blomqvist, A.; Ahuja, R.; Xiong, Z.; Yang, P.; Gao, M.; Pan, H.; Chen, P. Angew. Chem. Int. Edit. 2009, 48, 5828. doi: 10.1002/anie.v48:32
-
[78]
(78) Wang, J.; Chen, P.; Pan, H.; Xiong, Z.; Gao, M.; Wu, G.; Liang, C.; Li, C.; Li, B.; Wang, J. ChemSusChem. 2013, 6, 2181. doi: 10.1002/cssc.v6.11
-
[79]
(79) Li, C.; Liu, Y.; Pang, Y.; Gu, Y.; Gao, M.; Pan, H. Dalton Trans. 2014, 43, 2369. doi: 10.1039/c3dt52296b
-
[80]
(80) Li, C.; Liu, Y.; Gao, M.; Pan, H. J. Mater. Chem. A 2014, 2, 7345. doi: 10.1039/c4ta00025k
-
[81]
(81) Li, C.; Liu, Y.; Ma, R.; Zhang, X.; Li, Y.; Gao, M.; Pan, H. ACS Appl. Mater. Interfaces 2014, 6, 17024. doi: 10.1021/am504592x
-
[82]
(82) Chen, P.; Xiong, Z.; Yang, L.; Wu, G.; Luo, W. J. Phys. Chem. B 2006, 110, 14221. doi: 10.1021/jp061496v
-
[83]
(83) Chen, P.; Xiong, Z.; Luo, J.; Lin, J.; Tan, K. L. J. Phys. Chem. B 2003, 107, 10967. doi: 10.1021/jp034149j
-
[84]
(84) Hu, Y. H.; Ruckenstein, E. J. Phys. Chem. A 2003, 107, 9737. doi: 10.1021/jp036257b
-
[85]
(85) Ichikawa, T.; Hanada, N.; Isobe, S.; Leng, H. Y.; Fujii, H. J. Phys. Chem. B 2004, 108, 7887. doi: 10.1021/jp049968y
-
[86]
(86) Leng, H. Y.; Ichiwawa, T.; Hino, S.; Nakagawa, T.; Fujii, H. J. Phys. Chem. B 2005, 109, 10744. doi: 10.1021/jp0504571
-
[87]
(87) Hu, J.; Kwak, J.; Yang, Z.; Osborn, W.; Markmaitree, T.; Shaw, L. L. J. Power Sources 2008, 181, 116. doi: 10.1016/j.jpowsour.2008.03.034
-
[88]
(88) Lu, J.; Fang, Z. Z.; Sohn, H. Y. Inorg. Chem. 2006, 45, 8749. doi: 10.1021/ic060836o
-
[89]
(89) David, W. I. F.; Jones, M. O.; Gre ry, D. H.; Jewell, C. M.; Johnson, S. R.; Walton, A.; Edwards, P. P. J. Am. Chem. Soc. 2007, 129, 1594. doi: 10.1021/ja066016s
-
[90]
(90) Wu, H. J. Am. Chem. Soc. 2008, 130, 6515. doi: 10.1021/ja800300e
-
[91]
(91) Luo, W.; Wang, J.; Stewart, K.; Clift, M.; Gross, K. J. Alloy. Compd. 2007, 446 -447, 336.
-
[1]
-
-
[1]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[2]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[3]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[4]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[5]
Xiaohui Li , Ze Zhang , Jingyi Cui , Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027
-
[6]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[7]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[8]
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057
-
[9]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[10]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[11]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[12]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[13]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[14]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[15]
Jing JIN , Zhuming GUO , Zhiyin XIAO , Xiujuan JIANG , Yi HE , Xiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458
-
[16]
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
-
[17]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[18]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[19]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[20]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[1]
Metrics
- PDF Downloads(474)
- Abstract views(551)
- HTML views(6)