Citation: LIANG Chu, LIANG Sheng, XIA Yang, HUANG Hui, GAN Yong-Ping, TAO Xin-Yong, ZHANG Wen-Kui. Progress in the Mg(NH2)2-2LiH Material for Hydrogen Storage[J]. Acta Physico-Chimica Sinica, ;2015, 31(4): 627-635. doi: 10.3866/PKU.WHXB201501282 shu

Progress in the Mg(NH2)2-2LiH Material for Hydrogen Storage

  • Received Date: 5 December 2014
    Available Online: 28 January 2015

    Fund Project: 国家自然科学基金(51201151, 51172205, 201403196) (51201151, 51172205, 201403196) 浙江省自然科学基金(LY13E020010, LR13E020002) (LY13E020010, LR13E020002) 新世纪优秀人才支持计划(NCET111079) (NCET111079)浙江省教育厅科研项目(Y201432424)资助 (Y201432424)

  • Mg(NH2)2-2LiH composite is one of the most promising high-capacity hydrogen storage materials developed in recent years. Research on Mg(NH2)2-2LiH material for hydrogen storage is of considerable interest because of its favorable thermodynamic properties, high reversible hydrogen capacity, relatively low operating temperatures, and od cycling stability for dehydrogenation/hydrogenation. In this review, the recent progress in the hydrogen storage properties of Mg(NH2)2-2LiH material was systematically summarized. The focus is on the effect of material composites, crystal structures, particle (grain) sizes, and catalysts on the hydrogen storage properties of the Mg(NH2)2-2LiH material, and their reaction mechanisms for hydrogen storage. The challenges in and direction for further improving the hydrogen storage properties of the Mg(NH2)2-2LiH material are also pointed out.

  • 加载中
    1. [1]

      (1) Schlapbach, L.; Züttle, A. Nature 2001, 414, 353. doi: 10.1038/35104634

    2. [2]

      (2) Vanvucht, J. H.; Kuijpers, F. A.; Bruning, H. C. A. Philips Research Reports 1970, 25, 133.

    3. [3]

      (3) Reilly, J. J.; Wiswall, R. H. Inorg. Chem. 1968, 7, 2254. doi: 10.1021/ic50069a016

    4. [4]

      (4) Xiao, X. Z.; Chen, L. X.; Fan, X. L.; Ge, H.W.; Li, S. Q.; Ying, Z.; Wang, X. H.; Chen, C. P. Acta Phys. -Chim. Sin. 2008, 24, 423. [肖学章, 陈立新, 范修林, 葛红卫, 李寿权, 应窕, 王新华, 陈长聘. 物理化学学报, 2008, 24, 423.] doi: 10.3866/PKU.WHXB20080312

    5. [5]

      (5) Liang, C.; Li, G. X.; Lan, Z. Q.; Liu, Y. X.; Wei, W. L.; Guo, J. Acta Phys. -Chim. Sin. 2008, 24, 686. [梁初, 黎光旭, 蓝志强, 刘奕新, 韦文楼, 郭进. 物理化学学报, 2008, 24, 686.] doi: 10.3866/PKU.WHXB20080424

    6. [6]

      (6) Liu, Y. F.; Liang, C.; Zhou, H.; Gao, M. X.; Pan, H. G.; Wang, Q. D. Chem. Commun. 2011, 47, 1740. doi: 10.1039/c0cc03264f

    7. [7]

      (7) Bogdanovi?, B.; Schwickardi, M. J. Alloy. Compd. 1997, 253- 254, 1.

    8. [8]

      (8) Lan, Z. Q.; Xiao, X.; Su, X.; Chen, J. S.; Guo, J. Acta Phys. -Chim. Sin. 2012, 28, 1877. [蓝志强, 肖潇, 苏鑫, 陈捷狮, 郭进. 物理化学学报, 2012, 28, 1877.] doi: 10.3866/PKU.WHXB201205281

    9. [9]

      (9) Liang, C.; Liu, Y. F.; Luo, K.; Li, B.; Gao, M. X.; Pan, H. G.; Wang, Q. D. Chem. Eur. J. 2010, 16, 693. doi: 10.1002/chem.v16:2

    10. [10]

      (10) Fang, F.; Li, Y. T.; Song, Y.; Zha, J.; Zhao, B.; Sun, D. L. Acta Phys. -Chim. Sin. 2011, 27, 1537. [方方, 李永涛, 宋云, 査俊, 赵斌, 孙大林. 物理化学学报, 2011, 27, 1537.] doi: 10.3866/PKU.WHXB20110617

    11. [11]

      (11) Zheng, S. Y.; Fang, F.; Zhou, G. Y.; Chen, G. R.; Ouyang, L. Z.; Zhu, M.; Sun, D. L. Chem. Mater. 2008, 20, 3954. doi: 10.1021/cm8002063

    12. [12]

      (12) Martinez-Franco, X. Z.; Ma, E.; Dornheim, M.; Klassen, T.; Bormanm, R. J. Alloy. Compd. 2005, 404 -406, 771.

    13. [13]

      (13) Balde, C. P.; Hereijgers, B. P. C.; Bitter, J. H.; de Jong, K. P. J. Am. Chem. Soc. 2008, 130, 6761. doi: 10.1021/ja710667v

    14. [14]

      (14) Mandal, T. K.; Gre ry, D. H. Annu. Rep. Prog. Chem. Sect. A 2009, 105, 21. doi: 10.1039/b818951j

    15. [15]

      (15) Li, J. H.; Liu, B. Z.; Han, S. M.; Hu, L.; Zhu, X. L.; Wang, M. Z. Acta Phys. -Chim. Sin. 2011, 27, 403. [李金华, 刘宝忠, 韩树民, 扈琳, 朱惜林, 王明智. 物理化学学报, 2011, 27, 403.] doi: 10.3866/PKU.WHXB20110206

    16. [16]

      (16) Vajo, J. J.; Skeith, S. L.; Mertens, F. J. Phys. Chem. B 2005, 109, 3719. doi: 10.1021/jp040769o

    17. [17]

      (17) Pinkerton, F. E.; Meisner, G. P.; Meyer, M. S.; Balogh, M. P.; Kundrat, M. D. J. Phys. Chem. B 2005, 109, 6.

    18. [18]

      (18) Gross, A. F.; Vajo, J. J.; Van Atta, S. L.; Olson, G. L. J. Phys. Chem. C 2008, 112, 5651. doi: 10.1021/jp711066t

    19. [19]

      (19) Gu, J.; Gao, M. X.; Pan, H. G.; Liu, Y. F.; Li, B.; Yang, Y. J.; Liang, C.; Fu, H. L.; Guo, Z. X. Energy Environ. Sci. 2013, 6, 847. doi: 10.1039/c2ee24121h

    20. [20]

      (20) Chen, J.; Zhu, M. Materials China 2009, 28 (5), 2. [陈军, 朱敏. 中国材料进展, 2009, 28 (5), 2.]

    21. [21]

      (21) Chen, P.; Xiong, Z. T.; Luo, J. Z.; Lin, J. Y.; Tan, K. L. Nature 2002, 420, 302. doi: 10.1038/nature01210

    22. [22]

      (22) Xiong, Z.; Hu, J.; Wu, G.; Chen, P.; Luo, W.; Gross, K.; Wang, J. J. Alloy. Compd. 2005, 398, 235. doi: 10.1016/j.jallcom.2005.02.010

    23. [23]

      (23) Luo, W. F. J. Alloy. Compd. 2004, 381, 284. doi: 10.1016/j.jallcom.2004.03.119

    24. [24]

      (24) Luo, W.; Rönnebro, E. J. J. Alloy. Compd. 2005, 404 -406, 392.

    25. [25]

      (25) Xiong, Z.; Wu, G.; Hu, J.; Chen, P. Adv. Mater. 2004, 16, 1522.

    26. [26]

      (26) Janot, R.; Eymery, J.; Tarascon, J. J. Power Sources 2007, 164, 496. doi: 10.1016/j.jpowsour.2006.11.046

    27. [27]

      (27) Markmaitree, T.; Osborn, W.; Shaw, L. L. J. Power Sources 2008, 180, 535. doi: 10.1016/j.jpowsour.2008.02.037

    28. [28]

      (28) Markmaitree, T.; Osborn, W.; Shaw, L. L. Int. J. Hydrog. Energy 2008, 33, 3915. doi: 10.1016/j.ijhydene.2007.10.052

    29. [29]

      (29) Luo, W.; Sickafoose, S. J. Alloy. Compd. 2006, 407, 274. doi: 10.1016/j.jallcom.2005.06.046

    30. [30]

      (30) Luo, W.; Stavila, V.; Klebanoff, L. E. Int. J. Hydrog. Energy 2012, 37, 6646. doi: 10.1016/j.ijhydene.2012.01.019

    31. [31]

      (31) Araujo, C. M.; Scheicher, R. H.; Ahuja, R. Appl. Phys. Lett. 2008, 92, 021907. doi: 10.1063/1.2830703

    32. [32]

      (32) Liu, Y. F.; Li, B.; Tu, F. F.; Liang, C.; Gao, M. X.; Pan, H. G.; Wang, Q. D. Dalton Trans. 2011, 40, 8179. doi: 10.1039/c1dt10108k

    33. [33]

      (33) Hu, J.; Liu, Y.; Wu, G.; Xiong, Z.; Chen, P. J. Phys. Chem. C 2007, 111, 18439. doi: 10.1021/jp075757s

    34. [34]

      (34) Sudik, A.; Yang, J.; Halliday, D.; Wolverton, C. J. Phys. Chem. C 2007, 111, 6568. doi: 10.1021/jp0683465

    35. [35]

      (35) Luo, W.; Stewart, K. J. Alloy. Compd. 2007, 440, 357. doi: 10.1016/j.jallcom.2006.09.057

    36. [36]

      (36) Liu, Y.; Hu, J.; Wu, G.; Xiong, Z.; Chen, P. J. Phys. Chem. C 2008, 112, 1293.

    37. [37]

      (37) Liang, C.; Liu, Y.; Gao, M.; Pan, H. J. Mater. Chem. A 2013, 1, 5031. doi: 10.1039/c3ta01071f

    38. [38]

      (38) Xiong, Z.; Wu, G.; Hu, J.; Chen, P.; Luo, W.; Wang, J. J. Alloy. Compd. 2006, 417, 190. doi: 10.1016/j.jallcom.2005.07.072

    39. [39]

      (39) Leng, H. Y.; Ichikawa, T.; Hino, S.; Hanada, N.; Isobe, S.; Fujii, H. J. Phys. Chem. B 2004, 108, 8763. doi: 10.1021/jp048002j

    40. [40]

      (40) Nakamori, Y.; Kitahara, G.; Miwa, K.; Towata, S.; Orimo, S. Appl. Phys. A 2005, 80, 1.

    41. [41]

      (41) Liu, Y.; Liang, C.; Wei, Z.; Jiang, Y.; Gao, M.; Pan, H.; Wang, Q. Phys. Chem. Chem. Phys. 2011, 12, 3108.

    42. [42]

      (42) Leng, H. Y.; Ichiwawa, T.; Fujii, H. J. Phys. Chem. B 2006, 110, 12964. doi: 10.1021/jp061120h

    43. [43]

      (43) Aoki, M.; Noritake, T.; Kitaharab, G.; Nakamorib, Y.; Towataa, S.; Orimoba, S. J. Alloy. Compd. 2007, 428, 307. doi: 10.1016/j.jallcom.2006.03.044

    44. [44]

      (44) Leng, H. Y.; Ichikawa, T.; Isobe, S.; Hino, S.; Hanada, N.; Fujii, H. J. Alloy. Compd. 2005, 404-406, 443.

    45. [45]

      (45) Aoki, M.; Noritake, T.; Nakamori, Y.; Towata, S.; Orimo, S. J. Alloy. Compd. 2007, 446 -447, 328.

    46. [46]

      (46) Hu, J. J.; Fichtner, M. Chem. Mater. 2009, 21, 3485. doi: 10.1021/cm901362v

    47. [47]

      (47) Luo, S.; Flanagan, T. B.; Luo, W. J. Alloy. Compd. 2007, 440, L13.

    48. [48]

      (48) Sun, F.; Yan, M.; Ye, J.; Liu, X.; Jiang, L. J. Alloy. Compd. 2014, 616, 47. doi: 10.1016/j.jallcom.2014.07.128

    49. [49]

      (49) Sun, F.; Yan, M.; Liu, X.; Ye, J.; Li, Z.; Wang, S.; Jiang, L. Int. J. Hydrog. Energy 2014, 39, 9288. doi: 10.1016/j.ijhydene.2014.04.055

    50. [50]

      (50) Rijssenbeek, J.; Gao, Y.; Hanson, J.; Huang, Q.; Jones, C.; Toby, B. J. Alloy. Compd. 2008, 454, 233. doi: 10.1016/j.jallcom.2006.12.008

    51. [51]

      (51) Liang, C.; Gao, M.; Pan, H.; Liu, Y. Appl. Phys. Lett. 2014, 105, 083909. doi: 10.1063/1.4894378

    52. [52]

      (52) Liang, C.; Gao, M.; Pan, H.; Liu, Y.; Yan, M. Int. J. Hydrog. Energy 2014, 39, 17754. doi: 10.1016/j.ijhydene.2014.09.013

    53. [53]

      (53) Xie, L.; Liu, Y.; Li, G.; Li, X. J. Phys. Chem. C 2009, 113, 14523. doi: 10.1021/jp904346x

    54. [54]

      (54) Barison, S.; Agresti, F.; Russo, S. L.; Maddalena, A.; Palade, P.; Principi, G.; Torzo, G. J. Alloy. Compd. 2008, 459, 343. doi: 10.1016/j.jallcom.2007.04.278

    55. [55]

      (55) Liu, Y.; Zhong, K.; Luo, K.; Gao, M.; Pan, H.; Wang, Q. J. Am. Chem. Soc. 2009, 131, 1862. doi: 10.1021/ja806565t

    56. [56]

      (56) Wang, J.; Hu, J.; Liu, Y.; Xiong, Z.; Wu, G.; Pan, H.; Chen, P. J. Mater. Chem. 2009, 19, 2141. doi: 10.1039/b812653d

    57. [57]

      (57) Xia, G.; Tan, Y.; Li, D.; Guo, Z.; Liu, H.; Liu, Z.; Yu, X. Sci. Rep. 2014, 4, 6599. doi: 10.1038/srep06599

    58. [58]

      (58) Xia, G.; Li, D.; Chen, X.; Tan, Y.; Tang, Z.; Guo, Z.; Liu, H.; Liu, Z.; Yu, X. Adv. Mater. 2013, 25, 6238. doi: 10.1002/adma. v25.43

    59. [59]

      (59) Lohstroh, W.; Fichtner, M. J. Alloy. Compd. 2007, 446 -447, 332.

    60. [60]

      (60) Shahi, R. R.; Yadav, T. P.; Shaz, M. A.; Srivastva, O. N. Int. J. Hydrog. Energy 2010, 35, 238. doi: 10.1016/j.ijhydene.2009.10.029

    61. [61]

      (61) Chen, Y.; Wang, P.; Liu, C.; Cheng, H. Int. J. Hydrog. Energy 2007, 32, 1262. doi: 10.1016/j.ijhydene.2006.07.019

    62. [62]

      (62) Ma, L.; Wang, P.; Dai, H.; Cheng, H. J. Alloy. Compd. 2009, 468, L21.

    63. [63]

      (63) Liu, Y.; Hu, J.; Xiong, Z.; Wu, G.; Chen, P. J. Mater. Res. 2007, 22, 1339. doi: 10.1557/jmr.2007.0165

    64. [64]

      (64) Ma, L.; Fang, Z.; Dai, H.; Kang, X.; Liang, Y.; Wang, P.; Wang, P.; Cheng, H. J. Mater. Res. 2009, 24, 1936. doi: 10.1557/jmr.2009.0248

    65. [65]

      (65) Zhu, X.; Han, S.; Zhao, X.; Li, Y.; Liu, B. J. Rare Earths 2014, 32, 429. doi: 10.1016/S1002-0721(14)60089-2

    66. [66]

      (66) Demirocak, D. E.; Srinivasan, S. S.; Ram, M. K.; Kuhn, J. N.; Muralidharan, R.; Li, X.; swami, D. Y.; Stefannakos, E. K. Int. J. Hydrog. Energy 2013, 38, 10039. doi: 10.1016/j.ijhydene.2013.05.176

    67. [67]

      (67) Cao, H.; Zhang, Y.; Wang, J.; Xiong, Z.; Wu, G.; Qiu, J.; Chen, P. Dalton Trans. 2013, 42, 5524. doi: 10.1039/c3dt32165g

    68. [68]

      (68) Liang, C.; Liu, Y.; Jiang, Y.; Wei, Z.; Gao, M.; Pan, H.; Wang, Q. Phys. Chem. Chem. Phys. 2011, 13, 314. doi: 10.1039/c0cp00340a

    69. [69]

      (69) Hu, J.; Liu, Y.; Wu, G.; Xiong, Z.; Chua, Y. S.; Chen, P. Chem. Mater. 2008, 20, 4398. doi: 10.1021/cm800584x

    70. [70]

      (70) Hu, J.; Weidner, E.; Hoelzel, M.; Fichtner, M. Dalton Trans. 2010, 39, 9100. doi: 10.1039/c0dt00468e

    71. [71]

      (71) Zhang, X.; Li, Z.; Lv, F.; Li, H.; Mi, J.; Wang, S. Int. J. Hydrog. Energy 2010, 35, 7809. doi: 10.1016/j.ijhydene.2010.05.095

    72. [72]

      (72) Pan, H.; Shi, S.; Liu, Y.; Li, B.; Yang, Y.; Gao, M. Dalton Trans. 2013, 42, 3802. doi: 10.1039/c2dt32266h

    73. [73]

      (73) Li, B.; Liu, Y.; Gu, J.; Gao, M.; Pan, H. Chem. Asian J. 2013, 8, 374. doi: 10.1002/asia.201200938

    74. [74]

      (74) Liang, C.; Liu, Y.; Wei, Z.; Jiang, Y.; Wu, F.; Gao, M.; Pan, H. Int. J. Hydrog. Energy 2011, 36, 2137. doi: 10.1016/j.ijhydene.2010.11.068

    75. [75]

      (75) Yan, M.; Sun, F.; Liu, X.; Ye, J. Int. J. Hydrog. Energy 2014, 39, 19656. doi: 10.1016/j.ijhydene.2014.09.156

    76. [76]

      (76) Yan, M.; Sun, F.; Liu, X.; Ye, J.; Yuan, H.; Wang, S.; Jiang, L. J. Alloy. Compd. 2014, 603, 19. doi: 10.1016/j.jallcom.2014.03.054

    77. [77]

      (77) Wang, J.; Liu, T.; Wu, G.; Li, W.; Liu, Y.; Araújo, C. M.; Scheicher, R. H.; Blomqvist, A.; Ahuja, R.; Xiong, Z.; Yang, P.; Gao, M.; Pan, H.; Chen, P. Angew. Chem. Int. Edit. 2009, 48, 5828. doi: 10.1002/anie.v48:32

    78. [78]

      (78) Wang, J.; Chen, P.; Pan, H.; Xiong, Z.; Gao, M.; Wu, G.; Liang, C.; Li, C.; Li, B.; Wang, J. ChemSusChem. 2013, 6, 2181. doi: 10.1002/cssc.v6.11

    79. [79]

      (79) Li, C.; Liu, Y.; Pang, Y.; Gu, Y.; Gao, M.; Pan, H. Dalton Trans. 2014, 43, 2369. doi: 10.1039/c3dt52296b

    80. [80]

      (80) Li, C.; Liu, Y.; Gao, M.; Pan, H. J. Mater. Chem. A 2014, 2, 7345. doi: 10.1039/c4ta00025k

    81. [81]

      (81) Li, C.; Liu, Y.; Ma, R.; Zhang, X.; Li, Y.; Gao, M.; Pan, H. ACS Appl. Mater. Interfaces 2014, 6, 17024. doi: 10.1021/am504592x

    82. [82]

      (82) Chen, P.; Xiong, Z.; Yang, L.; Wu, G.; Luo, W. J. Phys. Chem. B 2006, 110, 14221. doi: 10.1021/jp061496v

    83. [83]

      (83) Chen, P.; Xiong, Z.; Luo, J.; Lin, J.; Tan, K. L. J. Phys. Chem. B 2003, 107, 10967. doi: 10.1021/jp034149j

    84. [84]

      (84) Hu, Y. H.; Ruckenstein, E. J. Phys. Chem. A 2003, 107, 9737. doi: 10.1021/jp036257b

    85. [85]

      (85) Ichikawa, T.; Hanada, N.; Isobe, S.; Leng, H. Y.; Fujii, H. J. Phys. Chem. B 2004, 108, 7887. doi: 10.1021/jp049968y

    86. [86]

      (86) Leng, H. Y.; Ichiwawa, T.; Hino, S.; Nakagawa, T.; Fujii, H. J. Phys. Chem. B 2005, 109, 10744. doi: 10.1021/jp0504571

    87. [87]

      (87) Hu, J.; Kwak, J.; Yang, Z.; Osborn, W.; Markmaitree, T.; Shaw, L. L. J. Power Sources 2008, 181, 116. doi: 10.1016/j.jpowsour.2008.03.034

    88. [88]

      (88) Lu, J.; Fang, Z. Z.; Sohn, H. Y. Inorg. Chem. 2006, 45, 8749. doi: 10.1021/ic060836o

    89. [89]

      (89) David, W. I. F.; Jones, M. O.; Gre ry, D. H.; Jewell, C. M.; Johnson, S. R.; Walton, A.; Edwards, P. P. J. Am. Chem. Soc. 2007, 129, 1594. doi: 10.1021/ja066016s

    90. [90]

      (90) Wu, H. J. Am. Chem. Soc. 2008, 130, 6515. doi: 10.1021/ja800300e

    91. [91]

      (91) Luo, W.; Wang, J.; Stewart, K.; Clift, M.; Gross, K. J. Alloy. Compd. 2007, 446 -447, 336.


  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    3. [3]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    4. [4]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    5. [5]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    6. [6]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    7. [7]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    8. [8]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    9. [9]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    10. [10]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    11. [11]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    12. [12]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    13. [13]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    14. [14]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    15. [15]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    16. [16]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    19. [19]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    20. [20]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

Metrics
  • PDF Downloads(474)
  • Abstract views(550)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return