Citation: PAN Jia-Ye. Thermodynamic Calculations for UO2 Powder Fabrication by a Dry Conversion Process[J]. Acta Physico-Chimica Sinica, ;2015, 31(S1): 19-24. doi: 10.3866/PKU.WHXB2014Ac19
-
A dry conversion process to produce UO2 powder is reported. Uranium fluoride (UF6) is directly hydrolyzed with water vapor from a concentric nozzle to form uranyl fluoride (UO2F2), which is transferred to a rotary kiln by a screw and reduced to ceramic-grade uranium dioxide (UO2) powder with backward mixing gases of vapor and hydrogen. Several of the main reactions and thermodynamics calculations for conversion of gaseous UF6 to UO2 powder are reported, including reactions for UO2F2+H2O/H2→UO2/UO3 and UO2+HF→UF4. The influence of the temperature of the first zone and the gas atmosphere of H2O-H2-HF on the fluorization of UO2 by HF in term of thermodynamics are also discussed. Moreover, the influences of the dry conversion process parameters on the UO2 physical properties are analyzed by qualification test results.
-
Keywords:
- Dry conversion process,
- UO2 powder,
- UO2F2,
- Fluorization reaction
-
-
[1]
(1) Duan, D. Z. Nuclear Power Engineering and Technology 2004, No. 1, 34. [段德智. 核电工程与技术, 2004, No. 1, 34.]
-
[2]
(2) Han, R. P. Nuclear Power Engineering and Technology 1996, No. 4, 34. [韩瑞平. 核电工程与技术, 1996, No. 4, 34.]
-
[3]
(3) Duan, D. Z. The Precipitation Mechanism and Process of Uranium Acid Ammonium. In PWR Fuel Element Fabrication Proceedings; Chang, X., Wu, Z. M. Eds.; Atomic Energy Press: Beijing, 2004; pp 33-41. [段德智. 铀酸铵的沉淀机理和工艺选择. In 压水堆燃料元件制造文集. 畅欣, 伍志明编. 北京: 原子能出版社, 2004: 33-41.]
-
[4]
(4) Feugier, A.; Chatuzange le Goubet. Method and Apparatus for Direct Conversion of Uranium Hexafluoride into Uranium Oxide. US Patent 6136285, 2000-10-24.
-
[5]
(5) Hart, E. J.; Shuck, L. D.; Ward, L. L. Production of Uranium Dioxide. CA Patent 1089192, 1980-11-11.
-
[6]
(6) Kenneth, C. R.; Word, L. L.; James, E. H. Ceramic Bulletin 1979, 58 (2), 219.
-
[7]
(7) Wu, Z. M.; Zhang, X. R.; Wang, J. Z. The Manufacturing Practice of Uranium Dioxide Pellets for Nuclear Power. In PWR Fuel Element Fabrication Proceedings; Chang, X., Wu, Z. M. Eds.; Atomic Energy Press: Beijing, 2004; pp 101-107. [伍志明, 张行如, 王景震. 核电用二氧化铀芯块的制造实践. In 压水堆燃料元件制造文集. 畅欣, 伍志明编; 北京: 原子能出版社, 2004: 101-107.]
-
[8]
(8) Hou, R.; Goddard, T. Ind. Eng. Chem. Res. 2007, 46, 2020. doi:10.1021/ie061289h
-
[9]
(9) Galkin, N. P.; Veryatin, U. D.; Yakhonin, I. F.; Lugonov, A. F.; Dymkov, Y. M. Atomic Energy 1982, 52 (1), 45. doi: 10.1007/BF01121773
-
[10]
(10) Ferris, L. M.; Gabbard, E. F. Kinetics of the Thermal Decomposition of Uranyl Fluoride. In Chemistry-General ORNL-2401, 13th ed.; OAK Ridge National Laboratory: Tennessee, 1958; pp 1-22.
-
[11]
(11) Grenthe, I.; Fuger, J.; Konings, R. J. M.; Lemire, R. J. Chemical Thermodynamics of Uranium. http://www.oecd-nea.org/dbtdb/pubs/uranium.pdf (accessed Mar 20, 2014).
-
[12]
(12) An, C. M.; Kim, C. G.; Lee, C. Y. Korean Journal of Materials Research 2002, 10 (2), 166.
-
[13]
(13) Knudsen, I. E.; Hootman, H. E.; Levite, N. M. Nuclear Science and Engineering 1964, 20 (3), 259.
-
[14]
(14) Daniel, H.; Daniel, C. M.; Felton, H. Process to Produce Commercial Grand Anhydrous Hydrogen Fluoride (AHF) and Uranium Oxide from the Defluorination of UF6. US Patent 6352677B1, 2002-03-05.
-
[15]
(15) Hou, R.; Goddard, T. Ind. Eng. Chem. Res. 2007, 46, 2020. doi: 10.1021/ie061289h
-
[16]
(16) Patisson, F.; Ablitzer-Thouroude, C.; Hébrarda, S.; Ablitzer, D. Prédiction de l'évolution granulométrique et morphologique d'une poudre dans un four tournant, http://arxiv.org/ftp/arxiv/papers/0712/0712.2139.pdf (accessed Dec 25, 2014).
-
[1]
-
-
[1]
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
-
[2]
Yu-Yu Tan , Lin-Heng He , Wei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986
-
[3]
Lan Yang , Yu Li , Mou Jiang , Rui Zhou , Hengjiang Cong , Minghui Yang , Lei Zhang , Shenhui Li , Yunhuang Yang , Maili Liu , Xin Zhou , Zhong-Xing Jiang , Shizhen Chen . Fluorinated [2]rotaxanes as sensitive 19F MRI agents: Threading for higher sensitivity. Chinese Chemical Letters, 2024, 35(10): 109512-. doi: 10.1016/j.cclet.2024.109512
-
[4]
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
-
[5]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[6]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[7]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[8]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[9]
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
-
[10]
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
-
[11]
Shengwen Guan , Zhaotong Wei , Ningxu Han , Yude Wei , Bin Xu , Ming Wang , Junjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348
-
[12]
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359
-
[13]
Yongheng Ren , Yang Chen , Hongwei Chen , Lu Zhang , Jiangfeng Yang , Qi Shi , Lin-Bing Sun , Jinping Li , Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394
-
[14]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[15]
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
-
[16]
Zizhuo Liang , Fuming Du , Ning Zhao , Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108
-
[17]
Anqiu LIU , Long LIN , Dezhi ZHANG , Junyu LEI , Kefeng WANG , Wei ZHANG , Junpeng ZHUANG , Haijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424
-
[18]
Yubang Li , Xixi Hu , Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274
-
[19]
Yinglian LI , Chengcheng ZHANG , Xinyu ZHANG , Xinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087
-
[20]
Yang Liu , Yan Liu , Kaiyin Yang , Zhiruo Zhang , Wenbo Zhang , Bingyou Yang , Hua Li , Lixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264
-
[1]
Metrics
- PDF Downloads(279)
- Abstract views(772)
- HTML views(8)